

Datatrans Payment Library
for Android

Developer's Manual

Datatrans AG

Swiss E-Payment Competence

Kreuzbühlstrasse 26, 8008 Zürich, Switzerland

Tel. +41 44 256 81 91, Fax +41 44 256 81 98

www.datatrans.ch

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 2/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Revisions

Version Date Author Comment

0.1 2011-02-08 Basil Achermann

ieffects ag

First draft

1.0 2011-02-15 Basil Achermann 1.0

1.1 2011-12-15 Basil Achermann 1.1 (PostFinance support)

1.2 2013-01-15 Basil Achermann 1.2 (Maintenance release)

1.3 2013-10-29 Basil Achermann MyOne added

1.4 2014-02-13 Basil Achermann Payment options, Android 4.4 fixes

1.5 2014-04-17 Basil Achermann Alias generation in standard mode;

PayPal, PostFinance Card recurring payments

1.5.1 2014-07-03 Basil Achermann Certificate pinning option

1.5.2 2014-08-13 Basil Achermann Swisscom Easypay added

1.6.0 2014-09-12 Basil Achermann Alias generation in hidden mode

1.6.1 2014-11-27 Basil Achermann PostFinance Card registration

1.6.2 2015-01-09 Basil Achermann Target SDK 21 support (Android 5)

1.7.0 2015-03-16 Basil Achermann Easypay Alias support, Lastschrift (ELV) method added,
context abstraction (DisplayContext)

1.7.1 2015-04-02 Basil Achermann ELV aliases with bankrouting

1.7.2 2015-04-16 Basil Achermann Language fix

1.8.0 2015-07-17 Basil Achermann SwissBilling added

1.9.0 2015-10-16 Basil Achermann JCB added

2.0.0 2015-10-29 Basil Achermann TWINT added

2.0.1 2016-06-29 Basil Achermann TWINT with new payment pages

2.1.0 2016-07-14 Patrick Schmid TWINT alias support

2.1.1 2016-08-19 Patrick Schmid TWINT alias adjustments

2.1.2 2016-09-27 Patrick Schmid Recurring payment methods returned if authorization
skipped

2.2.0 2016-11-16 Patrick Schmid Currency on alias request, switch to backup URL, TWINT fix

2.2.1 2017-01-09 Patrick Schmid Discover added, payment method on BusinessException

2.2.2 2017-03-24 Patrick Schmid Payment with amount > 0 only

2.3.0 2017-07-07 Patrick Schmid Reka added, merchant properties always sent to post URL

2.4.0 2017-08-25 Patrick Schmid TWINT payments supported again

2.5.0 2017-09-29 Nathanaël Mägli TWINT alias support added (TWINT User on File)

2.6.0 2018-01-31 Nathanaël Mägli Partial TLS 1.2 support for API 16-19

2.7.0 2018-03-15 Patrick Schmid Enhanced PayPal security

2.8.0 2018-04-25 Patrick Schmid PostFinance Card expiry, Diners CVV Fix

2.8.1 2018-05-03 Nathanaël Mägli Added UATP payment method

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 3/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

2.8.2 2018-05-18 Nathanaël Mägli Improved parameter decoding

2.8.3 2018-07-10 Nathanaël Mägli Bugfix credit card autofill

2.8.4 2018-07-18 Nathanaël Mägli Reka Rail & Reka Lunch support

2.8.5 2018-08-14 Patrick Schmid Replaced PaymentMethodSwissBilling by option

2.9.0 2018-08-30 Patrick Schmid Samsung Pay and Byjuno direct invoice added

3.0.0 2018-09-14 Patrick Schmid Added Google Pay

3.1.0 2018-12-06 Patrick Schmid Deferred authorization

3.1.1 2019-01-28 Patrick Schmid Samsung Pay API changes

3.1.2 2019-02-15 Nathanaël Mägli Settlement step added to payment process

3.1.3 2019-02-22 Patrick Schmid TWINT reqtype fix

3.2.0 2019-04-09 Patrick Schmid Detailed error codes, switched to AAR packaging, uniform
merchant properties, Samsung Pay service IDs

3.3.0 2019-07-02 Patrick Fompeyrine Added SwissPass, refactored Address & Customer objects,
recurring payment methods to/from JSON string, Bugfixes

3.4.0 2019-07-25 Melanie Hüsser Added SwissPass alias and POWERPAY

3.5.0 2019-08-13 Patrick Fompeyrine 3D secure when requesting alias, verify credit card alias

3.5.1 2019-11-04 Patrick Fompeyrine Removed customer option requirement for alias payment

3.5.2 2019-12-12 Patrick Fompeyrine Improved activity lifecycle handling

3.5.3 2020-02-25 Patrick Fompeyrine Workaround of Android 5 WebView bug

4.0.0 2020-07-01 Patrick Fompeyrine Support for new backend JSON API flow

4.0.1 2020-07-09 Patrick Fompeyrine Bugfixes

4.1.0 2020-07-28 Patrick Fompeyrine Added Coop Supercard

4.1.1 2020-08-21 Patrick Fompeyrine API 30 release, support createConfigurationContext

4.2.0 2020-09-21 Patrick Fompeyrine Added Paysafecard, Bugfixes

4.2.1 2020-10-09 Patrick Fompeyrine Added merchant properties on all TWINT calls

4.2.2 2020-10-27 Patrick Fompeyrine Window leak crash fix

4.3.0 2020-11-03 Patrick Fompeyrine Support PostFinance app switch

4.3.1 2020-11-25 Patrick Fompeyrine Adapting to backend API change

4.3.2 2020-11-27 Patrick Fompeyrine Use refno from backend JSON API flow for alias requests

4.3.3 2020-12-08 Nathanaël Mägli TWINT alias request returns transaction Id

4.3.4 2021-01-13 Patrick Fompeyrine Improve stability of external web process

4.6.0 2021-04-12 Melanie Hüsser Added Boncard (Lunch-Check), added Byjuno alias,
additional information when 3D secure fails

4.6.1 2021-06-14 Patrick Fompeyrine Expiration date in card alias request, fix Reka alias payment

4.6.2 2021-08-05 Melanie Hüsser Send Byjuno info parameters during alias payment

4.6.3 2021-08-13 Melanie Hüsser Return acquirer authorization code for error cases

4.6.4 2021-08-23 Melanie Hüsser Bugfixes

4.6.5 2021-12-16 Nathanaël Mägli Bugfixes

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 4/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Table of Contents

1 Introduction 6

1.1 Document Structure 6
1.2 Scope 6
1.3 Conventions 6

2 Overview 8

2.1 Payment Methods 8
2.2 Supported Platforms 8
2.3 Library Tasks 8
2.4 Payment Process 9
2.5 User Interface 9

3 Key Concepts 10

3.1 PaymentProcessAndroid 10
3.2 Library Invocation 10
3.3 State Notification 12
3.4 Recurring payments 13
3.4.1 (De-)Serialization to/from JSON of recurring payment method 13
3.5 Payment method registration (alias request) 14
3.5.1 Payment method selection/input by library (standard mode) 14
3.5.2 Payment method preselected by app, input by library 14
3.5.3 Credit card selection/input by app (hidden mode) 15
3.6 Deferred Authorization 15
3.7 Merchant Notification 16
3.8 Error Handling 17
3.8.1 Technical Errors 17
3.8.2 Business Errors 17
3.8.3 SSL Errors 17
3.9 New JSON API Flow 17
3.9.1 Credit card selection/input by app (hidden mode) 18

4 Mandatory settings 19

4.1 TWINT 19
4.1.1 TWINT not installed error 19
4.2 PayPal 19
4.3 SwissBilling 20
4.4 Byjuno 20
4.5 SwissPass 20
4.6 POWERPAY 21
4.7 Paysafecard 21
4.8 Samsung Pay 21
4.8.1 Configure apps 21
4.8.2 Supported Networks (Cards) 21

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 5/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.8.3 Regular Payment 22
4.8.4 Samsung Pay Button 22
4.9 Google Pay 22
4.9.1 Configure app for Google Pay 22
4.9.2 Supported Networks (Cards) 22
4.9.3 Regular Payment 23
4.9.4 Google Pay Button 23
4.9.5 Going Live 23
4.10 Recurring payment methods (de-)serialization to/from JSON 23

5 API 24

6 Library Integration 25

6.1 Package Contents 25
6.2 Android Studio Integration 25
6.3 Proguard/R8 rules 25

7 Appendix 27

7.1 List of Illustrations 27
7.2 List of Code Listings 27
7.3 List of Tables 27

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 6/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

1 Introduction
Datatrans AG, leading Swiss payment service provider, developed Datatrans iOS
Payment Library, allowing application developers to easily integrate Datatrans AG’s
payment services natively on the iPhone and iPad. Following its success, a version for
Android-based devices has been developed.

This manual provides guidance on library installation, invocation, and other issues of
importance to developers wishing to integrate Datatrans Payment Library (DTPL) for
Android into their mobile applications.

1.1 Document Structure

Chapter 1 – Introduction
Explains this document’s structure and content.

Chapter 2 – Overview
Gives an overview of the Datatrans Payment Library for Android.

Chapter 3 – Key Concepts
Explains key concepts of DTPL for Android and discusses some of the most common use
cases.

Chapter 4 – API
Gives an overview over the library’s classes.

Chapter 5 – Integration
Explains library installation and integration into Eclipse/ADT.

1.2 Scope

This document provides information on using DTPL to create mobile commerce apps on
Android devices. As such, it is primarily aimed at developers.

It is assumed that the reader is already familiar with Datatrans AG’s products and
services. Also, knowledge of the Java programming language, Android SDK, as well as
basic understanding of Eclipse and the ADT plugin are required.

Detailed description of the library’s API is not part of this document. Javadoc
documentation is provided in a separate directory.

1.3 Conventions

Throughout this document, the following styles are used:

Name
Emphasized technical terms, organization/product names

Path
File system paths, file names etc.

Class
Class and method names

 void codeSample() {
 code(); // sample code
 }

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 7/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Code listings

<replaceable>
Text meant to be replaced with data by the developer

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 8/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

2 Overview

2.1 Payment Methods

The library currently supports the following credit cards: VISA, MasterCard, Diners Club,
American Express, JCB, UATP, Manor MyOne, Discover, Coop Supercard and Boncard
(Lunch-Check). Additionally, PayPal, PostFinance Card/E-finance, Swisscom Easypay,
Lastschrift (ELV), SwissBilling, Samsung Pay, Byjuno, Google Pay, TWINT, Reka, SwissPass,
POWERPAY as well as Paysafecard are supported.

2.2 Supported Platforms

Android devices with OS 4.1 (Jelly Bean, API level 16) or higher are supported. The library
has been localized for English, French, German, Italian, and Dutch. Note that the library
does not support screen orientation change and expects that the Activity, in which the
library is called, to be portrait only.

2.3 Library Tasks

The payment library is responsible for the following tasks:

• Validation: credit card number, expiration date and CVV are validated online.

• Authentication: if merchant and credit card are enrolled with 3-D Secure services,
authentication ensures that the card is being used by its legitimate owner.

• Authorization: if amount and currency are valid and within the card’s limit, the
payment transaction is authorized and can be completed by the merchant once
goods are being delivered (settlement process).

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 9/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

2.4 Payment Process

Figure 2-1 gives an overview of the shopping and payment process on the mobile phone.

Figure 2-1: Payment process overview

The following steps occur during a successful session:

1. Host app: user selects goods/services to buy from a merchant. When the user
proceeds to checkout, complete order information is sent to the merchant’s server. In
return, the app receives a transaction reference number (refno).

2. App passes payment information and refno to DTiPL.

3. In a series of network calls the library performs all necessary steps to authenticate
the user (including 3-D Secure) and authorize the purchase.

4. Transaction is authorized in the background.

5. When authorization is completed, the merchant's server is informed by Datatrans
AG’s server. The previously supplied refno (see step 1) is used to identify and execute
the order.

6. App control is given back to the main app component via callback.

7. Merchant server makes settlement request to Datatrans server.

2.5 User Interface

The payment library does not come with a user interface other than a web view. The web
view can be presented either in full screen format or embedded into an existing app
screen.

&KHFNRXW

3DVVHV�UHIQR��¬�
SD\PHQW�LQIR�

0HUFKDQW

%DFNHQG

5HWXUQV�UHIQR���
SD\PHQW�LQIR

6KRSSLQJ

$SS

'DWDWUDQV

/LEUDU\

'DWDWUDQV

%DFNHQG

$XWKRUL]DWLRQ�UHVXOW
$XWKRUL]DWLRQ�UHVXOW

0RELOH�$SS

6HWWOHPHQW�UHTXHVW

3RVW�FDOOEDFN�WR�PHUFKDQW

$XWKHQWLFDWLRQ���
$XWKRUL]DWLRQ�

6HOHFWLRQ�RI

JRRGV��

VHUYLFHV

2UGHU

SURFHVVLQJ

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 10/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

3 Key Concepts

3.1 PaymentProcessAndroid

The library’s core component is the PaymentProcessAndroid class. The process can be
started with or without prior selection of a payment method. If no payment method is
supplied, the process starts with a selection web page in full screen format. The user can
cancel the process by pressing the back button present on all Android devices.

If payment method is selected by the app, the web view can be displayed either full
screen or in an Android ViewGroup. In the latter case, the application carries the
responsibility for screen design, controls (e.g. cancel button, hardware back button) or
other UI elements. The library just plugs its web view into the view group.

3.2 Library Invocation

Prior to library invocation, the host app must obtain a unique transaction reference
number (refno) to identify the order. This is typically done by sending complete order
information (basket contents, shipping information etc.) to the merchant’s web server.
The server generates a refno that is stored along with the order and sends it back to the
device. Optionally, the server also returns the HMAC-SHA256 signature for additional
payment security.

The library is invoked with refno, merchant ID, pricing information and one or several
payment methods. If multiple payment methods are supplied, a full-screen, web-based
selection screen is displayed (Standard mode).

Listing 3-1 shows an example of how DTPL is invoked with several payment methods.

 String merchantId = "12345"; // Datatrans merchant ID
 String refno = "refno12345"; // supplied by merchant's server
 String currencyCode = "CHF";
 int amount = 1000; // 10.-
 String signature = null;

 Payment payment = new Payment(merchantId, refno, currencyCode,
 amount, signature);

 ArrayList<PaymentMethod> methods = new ArrayList<>();
 // Add here all available payment methods, e.g.
 methods.add(new PaymentMethod(PaymentMethodType.VISA));
 methods.add(new PaymentMethod(PaymentMethodType.PAYPAL));
 methods.add(new PaymentMethod(PaymentMethodType.PFCARD));

 DisplayContext dc = new DisplayContext(new ResourceProvider(), context);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, payment, methods);
 ppa.setTestingEnabled(true);
 ppa.addStateListener(myListener);
 ppa.start();

Listing 3-1: Payment process invocation with several payment methods (Standard mode)

Some notes:

• The process in this example is started in test mode. No actual payments can be
made. Test mode is off by default.

• context is the Android app context

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 11/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

• No signature is used in this example.

If, on the other hand, the payment method has been previously determined, payment
takes place with little or no user interaction. Listing 3-2 shows an example of how DTPL is
invoked in a view group with a given payment method.

 String merchantId = "12345"; // Datatrans merchant ID
 String refno = "refno12345"; // supplied by merchant's server
 String currencyCode = "CHF";
 int amount = 1000; // 10.-

 Payment payment = new Payment(merchantId, refno, currencyCode,
 amount, null);

 PaymentMethodCreditCard pm = new PaymentMethodCreditCard(
 PaymentMethodType.VISA, "4900000000000003", 2021, 12,
 123, "Max Muster"); // pay by VISA
 // PaymentMethod pm = new PaymentMethod(PaymentMethodType.PAYPAL);// or PayPal
 // PaymentMethod pm = new PaymentMethod(PaymentMethodType.PFCARD);// PostFinance
 // PaymentMethod pm = new PaymentMethod(PaymentMethodType.VISA);// or VISA
 // AliasPaymentMethod pm = new AliasPaymentMethodCreditCard(
 // PaymentMethodType.VISA, "61219152351000133", "",
 // 2021, 12, "Max Muster"); // or VISA alias

 ViewGroup viewGroup = (ViewGroup)findViewById(R.id.paymentContainer);

 DisplayContext dc = new DisplayContext(new ResourceProvider(), viewGroup);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, payment, pm);

 ppa.setTestingEnabled(true);
 ppa.addStateListener(myListener);
 ppa.start();

Listing 3-2: Payment process invocation with preselected payment method

Table 3-1 lists all payment methods that can be used in this mode.

PaymentMethodType PaymentMethod Class Description

VISA, MASTERCARD,
DINERS, AMEX, JCB, UATP,
MYONE, DISCOVER,
SUPERCARD

PaymentMethod Credit card (standard mode)

VISA, MASTERCARD,
DINERS, AMEX, JCB, UATP,
MYONE, DISCOVER,
SUPERCARD

PaymentMethodCreditCard Credit card (hidden mode)

VISA, MASTERCARD,
DINERS, AMEX, JCB, UATP,
MYONE, DISCOVER,
SUPERCARD

AliasPaymentMethodCreditCard Credit card (alias/recurring
payment)

BONCARD PaymentMethod Boncard (Lunch-Check)

PFEFINANCE PaymentMethod PostFinance E-finance

PFCARD PaymentMethod PostFinance Card

PAYPAL PaymentMethod PayPal

EASYPAY PaymentMethod Swisscom Easypay

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 12/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

ELV PaymentMethod Lastschrift

TWINT PaymentMethod TWINT

REKA PaymentMethod Reka

SWISSBILLING PaymentMethod SwissBilling

SAMSUNG_PAY PaymentMethod Samsung Pay

GOOGLE_PAY PaymentMethod Google Pay

SWISSPASS PaymentMethod SwissPass

POWERPAY PaymentMethod POWERPAY

PAYSAFECARD PaymentMethod Paysafecard

BYJUNO PaymentMethod Byjuno

EASYPAY, TWINT,
SWISSPASS, POWERPAY,
BYJUNO

AliasPaymentMethod Alias payment

PFCARD AliasPaymentMethodPostFinanceCard PostFinance alias payment

ELV AliasPaymentMethodELV Lastschrift alias payment

REKA AliasPaymentMethodReka Reka alias payment

PAYPAL AliasPaymentMethodPayPal PayPal alias payment

Table 3-1: Supported app-selected payment methods

3.3 State Notification

The app must register a listener implementing the IPaymentProcessStateListener
interface. The initial state is NOT_STARTED. The final state is COMPLETED if payment was
successful, ERROR or CANCELED if it was not. Listing 3-3 shows a sample listener
implementation.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 13/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 @Override
 public void paymentProcessStateChanged(PaymentProcessAndroid process) {
 switch (process.getState()) {
 case COMPLETED:
 AliasPaymentMethod pm = process.getAliasPaymentMethod();
 if (pm != null) {
 // serialize and securely store pm for reuse
 }
 break;
 case CANCELED:
 // ignore, abort checkout, whatever...
 break;
 case ERROR:
 Exception e = process.getException();
 if (e instanceof BusinessException) {
 BusinessException be = (BusinessException)e;
 int errorCode = be.getErrorCode(); // Datatrans error code if needed
 // display some error message
 } else {
 // unexpected technical exception, either fatal TechnicalException or
 // javax.net.ssl.SSLException (certificate error)
 }
 break;
 }
 }

Listing 3-3 Listener notification

Please note that notifications are synchronously performed on the thread responsible
for the state change. This is not necessarily the UI-thread. UI-actions should therefore be
posted to the UI-thread using android.os.Handler.

3.4 Recurring payments

The library supports recurring payments for credit card, Boncard (Lunch-Check), PayPal,
PostFinance Card, Easypay, Lastschrift, Reka, TWINT, SwissPass and POWERPAY
payments. If recurring payments are enabled, the app can retrieve a
AliasPaymentMethod at the end of a successful transaction (see Listing 3-3) or at the
end of a card registration process (see section 3.5) and use this method for subsequent
transactions in full hidden mode (except for possible 3-D secure screens). Please note
that in order to generate and return an alias at the end of a payment transaction, option
setRecurringPayment has to be set to true.

3.4.1 (De-)Serialization to/from JSON of recurring payment method
Alias data returned by the library after a successful transaction or registration needs to
be stored for future payments. To facilitate this process and to have a platform
independent solution, the library can serialize the AliasPaymentMethod object to a JSON
string which, for example, can then be sent to a server or stored locally. If stored locally
on the device, appropriate encryption techniques should be applied to protect the data
from unauthorized access.

As soon as the user wants to pay with the alias, the previously saved JSON can be
deserialized to an AliasPaymentMethod. See Listing 3-4 for an example implementation.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 14/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 String json = aliasPaymentMethod.toJson();
 // save the JSON string, e.g. on a server
 // ...
 // User decides to pay with the alias, retrieve JSON
 aliasPaymentMethod = AliasPaymentMethod.fromJson(json);

Listing 3-4: (De-)Serialization to/from JSON of an AliasPaymentMethod

Important: Even if an app has its own credit card input dialog it must never store the
original credit card number or CVV.

3.5 Payment method registration (alias request)

The library supports creating credit card, Boncard (Lunch-Check), PostFinance Card,
Easypay, Reka, Lastschrift, TWINT, SwissPass, POWERPAY and Byjuno alias identifiers
without making a payment. Aliases are allowed to be stored by the app and can be used
for future hidden mode payments.

When creating an alias for cards, the app can either use its own card input screen and
pass the data to the library or let the library manage payment method input. For all
other payment methods, the library manages the registration and any user input.

3.5.1 Payment method selection/input by library (standard mode)
In this mode, the library presents a web view for payment method selection and input.
Credit card data is automatically verified in this mode with a test authorization of a
small amount.

Listing 3-5 shows creation of an alias in standard mode on the test system. The app is
notified as usual via state listener (alias in process.getAliasPaymentMethod()).

 DisplayContext dc = new DisplayContext(new ResourceProvider(), appContext);

 ArrayList<PaymentMethod> methods = new ArrayList<>();
 // Add here all available payment methods, e.g.
 methods.add(new PaymentMethod(PaymentMethodType.VISA));
 methods.add(new PaymentMethod(PaymentMethodType.PAYPAL));
 methods.add(new PaymentMethod(PaymentMethodType.PFCARD));

 AliasRequest ar = new AliasRequest(merchantId, currencyCode, methods);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, ar);

 ppa.setTestingEnabled(true);
 ppa.addStateListener(PaymentTest.this);

 ppa.start();

Listing 3-5: Creation of credit card alias in standard mode

3.5.2 Payment method preselected by app, input by library
In this mode, the app invokes the library with a given payment method. The library
presents a web view for payment method input. In case of a credit card, the data is
automatically verified with a test authorization.

Listing 3-6 shows how a Swisscom Easypay alias is created. The app is notified as usual
via state listener (alias in process.getAliasPaymentMethod()).

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 15/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 DisplayContext dc = new DisplayContext(new ResourceProvider(), appContext);

 AliasRequest ar = AliasRequest(merchantId, currencyCode,
 new PaymentMethod(PaymentMethodType.EASYPAY));
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, ar);

 ppa.setTestingEnabled(true);
 ppa.addStateListener(PaymentTest.this);

 ppa.start();

Listing 3-6: Alias creation with a given payment method

3.5.3 Credit card selection/input by app (hidden mode)
In this mode, the library is invoked with credit card details. The library generates an alias
and verifies the given credit card with a test authorization transaction.

Listing 3-7 shows creation of a credit card alias in testing mode. The app is notified as
usual via state listener. Note that this example will fail because the given credit card
data is not valid.

 DisplayContext dc = new DisplayContext(new ResourceProvider(), appContext);

 PaymentMethodCreditCard pm = new PaymentMethodCreditCard(PaymentMethodType.VISA,
 "4444333322221111", 2021, 12, 123, "Max Muster");
 AliasRequest ar = new AliasRequest(merchantId, currencyCode, pm);

 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, ar);
 ppa.setTestingEnabled(true);
 ppa.addStateListener(PaymentTest.this);

 ppa.start();

Listing 3-7: Creation of credit card alias in hidden mode

3.6 Deferred Authorization

Sometimes the payment amount is unknown when the user initiates a long-running
business transaction. An example would be a check-in / check-out train journey. This can
usually be done by server-to-server authorization once the amount is known using a
payment method alias.

In case of Google Pay, it is not possible to receive an alias for future server-to-server
transactions. However, it is possible to obtain a partially authorized transactionId for
deferred completion. This process is shown in Figure 3-2, again using a check-in and
check-out example. To achieve this, the option skipAuthorizationCompletion needs to be
set to true during a regular Google Pay payment. As soon as the amount is known, you
can either authorize the payment server-to-server or you invoke the library again. In
Listing 3-8, an example implementation is provided.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 16/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Figure 3-2: Flow of a payment with deferred authorization (Google Pay)

 // Select / register a payment method
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, aliasRequest);

 // -----

 // Check-in: in case of Google Pay get a transactionId for future completion
 PaymentProcessAndroid ppa;
 ppa = new PaymentProcessAndroid(dc, payment, googlePayPaymentMethod);
 ppa.getPaymentOptions().setSkipAuthorizationCompletion(true); // etc.
 //...
 public void paymentProcessStateChanged(final PaymentProcessAndroid process) {
 // get the transaction id and store for actual payment
 }

 // -----

 // Check-out:
 // use transaction id, refno and final amount for the actual authorization
 // (server-to-server, or
 PaymentProcessAndroid(DisplayContext, PaymentAuthorizationRequest))

Listing 3-8: Example implementation of deferred payment authorization (Google Pay)

3.7 Merchant Notification

On successful authorization, Datatrans AG’s authorization server invokes the merchant’s
postURL as defined by field URL Post in Datatrans Web Admin. Among other
information, fields shown in Listing 3-9 are posted as form post or XML post. The
merchant’s web server retrieves payment information previously stored with the same
refno and matches currency code and amount. It then executes the order and performs
transaction settlement with Datatrans using the returned uppTransactionId value.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 17/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

For additional information, please refer to the online documentation at
https://docs.datatrans.ch/docs/api-webhooks.

 amount=1000
 currency=CHF
 pmethod=VIS
 refno=refno12345
 uppTransactionId=100916141012915292
 acqAuthorizationCode=982889
 authorizationCode=915285337
 responseCode=01

 // if available
 aliasCC=70323122544331174
 expy=21
 expm=12

Listing 3-9: postURL fields

3.8 Error Handling

Three kinds of exceptions exist in the library which are treated differently:

• Technical exceptions: network interruption, memory or I/O errors

• Business exceptions: verification failure, authentication failure, authorization failure.
The business exception object may be a generic object of type BusinessException or
a specialized subclass (i.e. TWINTNotInstalledException, see 4.1.1) in order to provide
additional information for tailored error messages.

• SSL exceptions: An SSLException can occur if the SSL handshake fails in the WebView
for API levels 16-18 (TLS 1.2) or if the certificate chain is invalid and pinning is enabled.

3.8.1 Technical Errors
The library is built with the policy that recoverable technical errors lead to non-fatal
error messages. The user is encouraged to try again.

3.8.2 Business Errors
The policy for business errors is that the payment process is aborted immediately and no
error message is displayed. The exception object can be retrieved from the payment
process if it is in state ERROR.

3.8.3 SSL Errors
The WebView on most devices with Android API 16-18 does not support secure
connections. In such cases a SSLException is returned.

3.9 New JSON API Flow

In the new JSON API flow, a payment or alias registration is initialized using the new
Datatrans backend API (https://api-reference.datatrans.ch/json/#tag/v1transactions). In order
to invoke the library, a mobileToken has to be requested in the initialize transaction API call.
This is done by adding returnMobileToken=true on the OptionRequest. This token can then
be used to invoke the PaymentProcessAndroid without providing any payment details.
Note: A new mobile token has to be requested for every invocation of the library.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 18/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 String mobileToken = initializePaymentInBackend();

 DisplayContext dc = new DisplayContext(new ResourceProvider(), context);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, mobileToken);

 ppa.setTestingEnabled(true);
 ppa.addStateListener(myListener);
 ppa.start();

Listing 3-10: Invoking the library using the new API flow

Moreover, various parameters from the PaymentOptions object can be added to the initial
request to the Datatrans backend. Refer to the online documentation to see which ones are
supported.

3.9.1 Credit card selection/input by app (hidden mode)
If the credit card selection and input is handled by the merchant app, the details must
not be sent in the initial request to the Datatrans backend. Instead, the credit card
information should be passed to the PaymentProcessAndroid.

 String mobileToken = initializePaymentInBackend();

 DisplayContext dc = new DisplayContext(new ResourceProvider(), context);
 PaymentMethodCreditCard pm = new PaymentMethodCreditCard(PaymentMethodType.VISA,
 "4444333322221111", 2021, 12, 123, "Max Muster");
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, mobileToken, pm);

 ppa.setTestingEnabled(true);
 ppa.addStateListener(myListener);
 ppa.start();

Listing 3-11: Hidden mode credit card payment using the new API flow

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 19/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4 Mandatory settings

4.1 TWINT

4.1.1 TWINT not installed error

If no TWINT app or no up-to-date TWINT app is installed to handle payment or registration
instructions, the business exception will be of the type TWINTNotInstalledException.

Please display the following error messages:

Language Error message

DE Auf diesem Gerät ist keine oder eine veraltete Version von
TWINT installiert. Bitte aktualisieren oder installieren Sie die
TWINT App.

EN No or an outdated version of TWINT is installed on this device.
Please update or install the TWINT app.

FR TWINT n’est pas installée ou une version obsolète de TWINT est
installée sur cet appareil. Veuillez mettre à jour ou installer
l’app TWINT.

IT Su questo dispositivo non è installato TWINT, oppure è
installata una versione obsoleta. La preghiamo di aggiornare o
installare l'App TWINT.

4.2 PayPal

For PayPal payments an external web process is used. After this web process has
finished, a callback to your app is issued. In order to receive this callback, you need to
define the Datatrans relay activity with an intent filter in your app manifest for a
defined scheme as shown in Listing 4-12, and configure the setAppCallbackScheme()
option (Listing 4-13).

Keep in mind that the URI scheme must be unique to the shopping app and the activity.
Do not use actual protocols or file types such as “http”, “mailto”, “pdf” etc., generic names
like “ticket”. An example would be the package name extended by an identifier dtpl.

<activity
 android:name="ch.datatrans.payment.ExternalProcessRelayActivity"
 android:launchMode="singleTask"
 android:enabled="false"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="your.package.name.dtpl" />
 </intent-filter>
 </activity>

Listing 4-12 External process relay activity in manifest

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 20/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 paymentProcessAndroid.getPaymentOptions()
 .setAppCallbackScheme("your.package.name.dtpl");

Listing 4-13 Setting app callback scheme on options

Moreover, add the following dependency to the build.gradle of your project:

implementation 'androidx.browser:browser:1.3.0'

Listing 4-14 Configuration for PayPal in the build.gradle

4.3 SwissBilling

For SwissBilling transactions, a Customer object has to be created and configured via
the setCustomer() option. In addition, an optional SwissBillingPaymentInfo can be
initialized and set via the setSwissBillingPaymentInfo() option (Listing 4-15). An example
of both configurations can be seen in the Javadoc of the SwissBillingPaymentInfo class.

 paymentProcessAndroid.getPaymentOptions().setCustomer(customer);
 paymentProcessAndroid.getPaymentOptions()
 .setSwissBillingPaymentInfo(swissBillingInfo); // optional

Listing 4-15: Configuration for SwissBilling

4.4 Byjuno

For Byjuno transactions, a Customer object has to be created and configured via the
setCustomer() option. In addition, an optional ByjunoPaymentInfo can be initialized and
set via the setByjunoPaymentInfo() option (Listing 4-16). An example of both
configurations can be seen in the Javadoc of the ByjunoPaymentInfo class.

 paymentProcessAndroid.getPaymentOptions().setCustomer(customer);
 paymentProcessAndroid.getPaymentOptions()
 .setByjunoPaymentInfo(byjunoInfo); // optional

Listing 4-16: Configuration for Byjuno

4.5 SwissPass

For SwissPass transactions, there are four possible ways to configure the library:

• Doing nothing

• Provide a Customer object

• Provide a SwissPassPaymentInfo object

• Provide both objects

The Customer and SwissPassPaymentInfo can be set via the setCustomer() or
setSwissPassPaymentInfo() option respectively (Listing 4-17). Keep in mind that the user
needs to put in the information that are not already provided.

If a Customer is given, then the contents of the object must match the details stored in
the given SwissPass account. Example configurations can be seen in the Javadoc of the
SwissPassPaymentInfo class.

 paymentProcessAndroid.getPaymentOptions().setCustomer(customer);
 paymentProcessAndroid.getPaymentOptions().setSwissPassPaymentInfo(swissPassInfo);

Listing 4-17: Configuration for SwissPass

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 21/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.6 POWERPAY

For POWERPAY transactions, a Customer object has to be created and configured via
the setCustomer() option. In addition to the default parameters, this object must contain
a gender and an address with a city. The date of birth can be omitted but the user will
be prompted to enter it manually in that case.

 Address address = new Address("Max", "Muster", "via streccione 2", "6900");
 address.setCity("Lugano"); // required
 Customer customer = new Customer();
 customer.setAddress(address);
 customer.setGender("male"); // required
 customer.setBirthDate(new Date(1980, 1, 1)); // optional
 paymentProcessAndroid.getPaymentOptions().setCustomer(customer);

Listing 4-18: Configuration for POWERPAY

4.7 Paysafecard

For Paysafecard transactions, a unique ID has to be set via the
setPaysafecardMerchantClientId() option for identifying a customer. As an example, this
could be the unique ID of your customer as registered within your database. If you are
using the e-mail address or any other personal information, please encrypt it.

 paymentProcessAndroid.getPaymentOptions().setPaysafecardMerchantClientId(id);

Listing 4-19: Configuration for Paysafecard

4.8 Samsung Pay

4.8.1 Configure apps
In order to use Samsung Pay in your test app, you need to add the following to your
Android Manifest inside the application tag:

 <application>
 ...
 <meta-data android:name="debug_mode" android:value="Y" />
 <meta-data android:name="spay_debug_api_key" android:value="" />
 <meta-data android:name="spay_sdk_api_level" android:value="2.3" />
 </application>

Listing 4-20 Configuration for Samsung Pay in the manifest of the test app

Note: The tag with name spay_debug_api_key must be defined even if it is empty.

For your release app, you only have to add:

 <application>
 ...
 <meta-data android:name="debug_mode" android:value="N" />
 <meta-data android:name="spay_sdk_api_level" android:value="2.3" />
 </application>

Listing 4-21 Configuration for Samsung Pay in the manifest of the production app

4.8.2 Supported Networks (Cards)
Samsung Pay must be configured with the list of card types supported by the merchant’s
acquirer, usually at least Visa and Mastercard. If you would like to support other cards,
e.g. American Express, please check with Datatrans support (support@datatrans.ch) or
ask your acquirer.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 22/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Card types are configured via supportedNetworks parameter as a list of type
PaymentMethodType (see code example below).

4.8.3 Regular Payment
If you want to use Samsung Pay just like any other payment method, you have to provide
the supported card networks and a name, which will be shown on the Samsung Pay
sheet, as shown in Listing 4-22. Furthermore, add SAMSUNG_PAY to the list of payment
methods you want to support.

Note that the library determines whether Samsung Pay is present and hides that
payment method if the device does not support Samsung Pay.

 ArrayList<PaymentMethodType> supportedNetworks = new ArrayList<>();
 supportedNetworks.add(PaymentMethodType.VISA);
 supportedNetworks.add(PaymentMethodType.MASTERCARD);
 SamsungPayConfig samsungPayConfig =
 new SamsungPayConfig(supportedNetworks, "Example merchant");
 paymentProcessAndroid.getPaymentOptions().setSamsungPayConfig(samsungPayConfig);

Listing 4-22 Configure Samsung Pay for payments

4.8.4 Samsung Pay Button
If you want to use a stand-alone Samsung Pay button in your app, please do so by
following Samsung Pay’s guidelines. However, check first the availability of Samsung Pay
by using the SamsungPayAvailabilityChecker (see Javadoc for details). Once the user
has pressed the button, configure the payment library as described above and set
Samsung Pay as the sole accepted payment method (Listing 4-23). Samsung Pay will
then start directly without additional library screens.

 PaymentMethod pm = new PaymentMethod(PaymentMethodType.SAMSUNG_PAY);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, payment, pm);
 // additional Samsung Pay configurations as explained above...

Listing 4-23 Direct invocation of Samsung Pay

4.9 Google Pay

4.9.1 Configure app for Google Pay
In order to use Google Pay in your app, you need to add the following dependency to the
build.gradle of your project. Note that you have to explicitly state the two android
support libraries as well if there is already another com.android.support package with a
specific version in your project, e.g. customtabs.

implementation 'com.google.android.gms:play-services-wallet:18.0.0'

// Only needed if there is already a com.android.support library
implementation 'com.android.support:appcompat-v7:<version>'
implementation 'com.android.support:support-v4:<version>'

Listing 4-24 Configuration for Google Pay in the build.gradle

4.9.2 Supported Networks (Cards)
Google Pay must be configured with the list of card types supported by the merchant’s
acquirer, usually at least Visa and Mastercard. If you would like to support other cards,
e.g. American Express, please check with Datatrans support (support@datatrans.ch) or
ask your acquirer.

Card types are configured via supportedNetworks parameter as a list of type
PaymentMethodType (see code example below).

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 23/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.9.3 Regular Payment
If you want to use Google Pay just like any other payment method, you have to provide
the supported card networks and a name, which will be shown on the Google Pay sheet,
as shown in Listing 4-25. Furthermore, add GOOGLE_PAY to the list of payment methods
you want to support.

 ArrayList<PaymentMethodType> supportedNetworks = new ArrayList<>();
 supportedNetworks.add(PaymentMethodType.VISA);
 supportedNetworks.add(PaymentMethodType.MASTERCARD);
 GooglePayConfig googlePayConfig =
 new GooglePayConfig(supportedNetworks, "Example merchant");
 paymentProcessAndroid.getPaymentOptions().setGooglePayConfig(googlePayConfig);

Listing 4-25 Configure Google Pay for payments

4.9.4 Google Pay Button
If you want to use a stand-alone Google Pay button in your app, please do so by
following Google Pay’s guidelines. However, check first the availability of Google Pay by
using the GooglePayAvailabilityChecker (see Javadoc for details). Once the user has
pressed the button, configure the payment library as described above and set Google
Pay as the sole accepted payment method (Listing 4-26). Google Pay will then start
directly without additional library screens.

 PaymentMethod pm = new PaymentMethod(PaymentMethodType.GOOGLE_PAY);
 PaymentProcessAndroid ppa = new PaymentProcessAndroid(dc, payment, pm);
 // additional Google Pay configurations as explained above...

Listing 4-26 Direct invocation of Google Pay

4.9.5 Going Live
There are two important steps that you have to do before using Google Pay in your
production app.

- First, you need to request production access from Google Pay Support. This can
be done on https://developers.google.com/pay/api/android/guides/test-and-
deploy/integration-checklist#requesting-production-access where you also find an
integration checklist to ensure everything works as expected.

- Second, you have to enable your app in the Google Pay Developer Profile.

After that, you are ready to request launch approval from Google for your production
app.

4.10 Recurring payment methods (de-)serialization to/from JSON

In case that you (de-)serialize recurring payment methods to/from JSON, you need to add
the Gson library to your project. Add following line to your build.gradle file:
implementation 'com.google.code.gson:gson:2.8.5'

Listing 4-27 Configuration for (de-)serializing recurring payment methods to/from JSON in the
build.gradle

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 24/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5 API
Figure 5-3 gives an overview of the library’s classes. Full API documentation is located in
the javadoc directory of the documentation folder.

Figure 5-3: Library classes

Class Diagram 1

+paymentProcessStateChanged():void

<< interface >>
IPaymentProcessStateListener

+...():void
+...():void
+cancel():void
+removeStateListener(listener:IPaymentProcessStateListener):void
+addStateListener(listener:IPaymentProcessStateListener):void
+start():void
+getRecurringPaymentMethod():RecurringPaymentMethod
+getState():PaymentProcessState

PaymentProcessAndroid
-type:PaymentMethodType

PaymentMethod

-cardHolder:String
-cvv:int
-expiryDateMonth:int
-expiryDateYear:int
-cardNumber:String
PaymentMethodCreditCard

-alias:String
RecurringPaymentMethod

-maskedCardNumber:String
-cardHolder:String
-expiryDateMonth:int
-expiryDateYear:int

RecurringPaymentMethodCreditCard

uses

calls back

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 25/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

6 Library Integration

6.1 Package Contents

The library is distributed as a single .zip file with a directory structure shown in Table 6-2.

Directory Description

/doc Contains this documentation and Javadoc.

/dtapl-X.X.X.aar AAR file to be added to Android Studio

Table 6-2: Directory structure

6.2 Android Studio Integration

The easiest way to integrate a local AAR file to a project is to use the module import
wizard. This can be found under File->New Module… and then choose Import .JAR/.AAR
Package (Figure 6-4). After that, you only have to point to the AAR file and Android
Studio creates a library module for it.

You can now use the library in your project.

Figure 6-4: Import wizard for AAR package

6.3 Proguard/R8 rules

This part of the integration is needed in two cases:
- When app stores alias payment methods as serialized data
- Samsung Pay

The purpose of these rules for Proguard/R8 is to remain compatible with future versions. Add
the needed rules in Listing 6-28 to your proguard-rules.pro file.

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 26/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

needed when using serialized alias payment methods
-keepnames class * implements java.io.Serializable
-keepclassmembers class * implements java.io.Serializable {
 static final long serialVersionUID;
 private static final java.io.ObjectStreamField[] serialPersistentFields;
 !static !transient <fields>;
 private void writeObject(java.io.ObjectOutputStream);
 private void readObject(java.io.ObjectInputStream);
 java.lang.Object writeReplace();
 java.lang.Object readResolve();
}

-keep class com.samsung.** { *; } # needed for Samsung Pay

Listing 6-28 Proguard/R8 rules

Datatrans Payment Library for Android
Developer's Manual

Version: 4.6.5
Date: 2021-12-16
Page: 27/27

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

7 Appendix

7.1 List of Illustrations

Figure 2-1: Payment process overview 9
Figure 3-2: Flow of a payment with deferred authorization (Google Pay) 16
Figure 5-3: Library classes 24
Figure 6-4: Import wizard for AAR package 25

7.2 List of Code Listings

Listing 3-1: Payment process invocation with several payment methods (Standard mode)
 10
Listing 3-2: Payment process invocation with preselected payment method 11
Listing 3-3 Listener notification 13
Listing 3-4: (De-)Serialization to/from JSON of an AliasPaymentMethod 14
Listing 3-5: Creation of credit card alias in standard mode 14
Listing 3-6: Alias creation with a given payment method 15
Listing 3-7: Creation of credit card alias in hidden mode 15
Listing 3-8: Example implementation of deferred payment authorization (Google Pay) 16
Listing 3-9: postURL fields 17
Listing 3-10: Invoking the library using the new API flow 18
Listing 3-11: Hidden mode credit card payment using the new API flow 18
Listing 4-12 External process relay activity in manifest 19
Listing 4-13 Setting app callback scheme on options 20
Listing 4-14 Configuration for PayPal in the build.gradle 20
Listing 4-15: Configuration for SwissBilling 20
Listing 4-16: Configuration for Byjuno 20
Listing 4-17: Configuration for SwissPass 20
Listing 4-18: Configuration for POWERPAY 21
Listing 4-19: Configuration for Paysafecard 21
Listing 4-20 Configuration for Samsung Pay in the manifest of the test app 21
Listing 4-21 Configuration for Samsung Pay in the manifest of the production app 21
Listing 4-22 Configure Samsung Pay for payments 22
Listing 4-23 Direct invocation of Samsung Pay 22
Listing 4-24 Configuration for Google Pay in the build.gradle 22
Listing 4-25 Configure Google Pay for payments 23
Listing 4-26 Direct invocation of Google Pay 23
Listing 4-27 Configuration for (de-)serializing recurring payment methods to/from JSON
in the build.gradle 23
Listing 6-28 Proguard/R8 rules 26

7.3 List of Tables

Table 3-1: Supported app-selected payment methods 12
Table 6-2: Directory structure 25

