

Datatrans iOS Payment
Library

Developer's Manual

Datatrans AG

Swiss E-Payment Competence

Kreuzbühlstrasse 26, 8008 Zürich, Switzerland

Tel. +41 44 256 81 91, Fax +41 44 256 81 98

www.datatrans.ch

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 2/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Revisions

Version Date Author Comment

0.1 2010-09-17 Basil Achermann

ieffects ag

First draft

0.2 2010-09-20 Arman Mkrtchyan Changed logos, replaced Figure 2.1 and added Figure 4.1

0.2 2010-09-21 Arman Mkrtchyan Added logo to first page, changed old datatrans logo to
the new one, changed Figure 2.2 (skiped last 2 screens),
deleted property “localizedMerchant” from class
DTPaymentRequest.

0.3 2010-09-21 Basil Achermann DTVisualStyle API changes

1.0 2010-09-27 Basil Achermann Styling chapter updated, DTVisualStyle API changes, 3-D
secure added to screenshots

1.1 2010-10-21 Arman Mkrtchyan Added “Secure payment by Datatrans” to screenshots

1.2 2010-10-25 Basil Achermann Library 1.1 changes, API clarifications

1.3 2011-02-16 Basil Achermann Library 1.2 changes

1.4 2011-03-11 Basil Achermann Library 1.3 changes

1.4.1 2011-04-11 Basil Achermann Dutch localization added

1.5 2011-05-12 Basil Achermann Rotation and landscape mode

1.6 2012-09-21 Basil Achermann iOS 6, iPad support, card holder optional, accessibility

1.6.1 2012-09-25 Basil Achermann iOS 6 issues

1.6.2 2012-09-25 Basil Achermann Auto-fill issue

1.7 2013-06-06 Basil Achermann Recurring payments (PostFinance Card & PayPal)

1.7.1 2013-08-19 Basil Achermann DTPaymentReturnsCreditCardAlways

1.8 2013-10-23 Basil Achermann Hidden mode with card data, MyOne, iOS 7

1.8.1 2014-02-13 Basil Achermann New payment options, 64-bit support

1.8.2 2014-07-03 Basil Achermann Certificate pinning option

1.8.3 2014-08-13 Basil Achermann Swisscom Easypay added

1.9.0 2014-09-16 Basil Achermann New alias generation modes, iOS 8

1.9.1 2014-11-25 Basil Achermann PostFinance Card registration

2.0.0 2015-03-15 Basil Achermann Easypay alias + ELV

2.1.0 2015-04-02 Basil Achermann Card scanning

2.1.1 2015-04-16 Basil Achermann Web-based CC input option

2.1.2 2015-05-04 Basil Achermann Language option

2.2.0 2015-07-17 Basil Achermann SwissBilling payment method added

2.3.0 2015-10-16 Basil Achermann JCB added, iOS 9 changes

2.4.0 2015-10-29 Basil Achermann TWINT added

2.5.0 2016-06-28 Basil Achermann Keyboard fix, suppress error option, Bitcode error

2.6.0 2016-07-06 Basil Achermann Apple Pay added

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 3/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

2.7.0 2016-07-14 Basil Achermann TWINT registration/alias support

2.7.1 2016-08-19 Patrick Schmid TWINT adjustments (refno)

2.7.2 2016-09-09 Basil Achermann Bugfixes

2.7.3 2016-09-27 Basil Achermann iOS 10 maintenance release

2.8.0 2016-11-16 Patrick Schmid Currency on alias request, switch to backup URL

2.8.1 2016-12-09 Patrick Schmid Apple Pay method returned for future payments

2.8.2 2017-01-09 Patrick Schmid Discover added, payment method on NSError

2.8.3 2017-03-24 Patrick Schmid Apple Pay improvement, payment with amount > 0 only

2.8.4 2017-03-31 Patrick Schmid Apple Pay fix

2.8.5 2017-04-12 Patrick Schmid Added supported networks to Apple Pay config

2.9.0 2017-07-07 Patrick Schmid Added Reka, merchant properties always sent to post URL

3.0.0 2017-07-27 Basil Achermann New date picker, iOS 11 maintenance release

3.1.0 2017-08-24 Patrick Schmid TWINT payments supported again

3.2.0 2017-09-29 Basil Achermann TWINT alias support, Diners CVV, iPhone X, iOS 11 fixes

3.3.0 2018-03-14 Patrick Schmid Enhanced PayPal security

3.4.0 2018-04-25 Patrick Schmid PostFinance Card expiry

3.4.1 2018-05-03 Basil Achermann Added UATP payment method

3.4.2 2018-06-11 Basil Achermann Bugfixes

3.4.3 2018-07-18 Basil Achermann Reka Rail & Reka Lunch support

3.5.0 2018-08-30 Patrick Schmid Byjuno direct invoice added

3.5.1 2018-10-02 Patrick Schmid TWINT fix

3.5.2 2018-11-19 Patrick Schmid Web view transition

3.6.0 2018-12-06 Patrick Schmid Deferred authorization

3.6.1 2019-02-06 Basil Achermann ELV alias + CC date input fix

3.6.2 2019-02-15 Basil Achermann New ELV icon, keep CC sent to backend

3.6.3 2019-03-05 Patrick Schmid Reqtype fix

3.7.0 2019-04-09 Patrick Schmid Detailed error codes, uniform merchant properties

3.7.1 2019-05-15 Patrick Schmid Alias error message fix

3.8.0 2019-07-02 Patrick Fompeyrine Added SwissPass, refactored DTAddress & DTCustomer
objects, recurring payment methods to/from JSON string,
Bugfixes

3.9.0 2019-07-25 Sebastian Kirsche Added SwissPass alias and POWERPAY

3.9.1 2019-08-13 Patrick Fompeyrine 3D secure when requesting alias, verify credit card alias

4.0.0 2019-09-06 Patrick Fompeyrine iOS 13 fixes, support dark mode, added web option for ELV

4.0.1 2019-11-04 Patrick Fompeyrine Removed customer option requirement for alias payment

4.0.2 2020-03-26 Patrick Fompeyrine Removed UIWebView

4.0.3 2020-04-08 Patrick Fompeyrine Removed UIAlertView

4.1.0 2020-06-30 Patrick Fompeyrine Support for new backend JSON API flow

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 4/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.2.0 2020-07-28 Patrick Fompeyrine Added Coop Supercard, Scene support bugfixes

4.2.1 2020-08-21 Patrick Fompeyrine Bugfixes

4.2.2 2020-08-25 Patrick Fompeyrine Support old Apple Pay alias objects

4.3.0 2020-09-22 Patrick Fompeyrine Added Paysafecard

4.3.1 2020-10-09 Patrick Fompeyrine Added merchant properties on all TWINT calls

4.4.0 2020-11-03 Patrick Fompeyrine Support PostFinance app switch

4.4.1 2020-11-13 Patrick Fompeyrine Updated Apple Pay logo

4.4.2 2020-11-25 Patrick Fompeyrine Adapting to backend API change

4.4.3 2020-11-27 Patrick Fompeyrine Use refno from backend JSON API flow for alias requests

4.4.4 2020-12-08 Basil Achermann TWINT alias request returns transaction Id

4.4.5 2021-01-22 Sebastian Kirsche iOS 13/14 3D secure alias payment fix

4.4.6 2021-02-08 Sebastian Kirsche Bugfixes for TWINT and PayPal

4.5.0 2021-03-10 Sebastian Kirsche Added Boncard (Lunch-Check)

4.6.0 2021-04-06 Sebastian Kirsche Added Byjuno alias, additional information when 3D
secure fails

4.6.1 2021-05-21 Sebastian Kirsche Renamed Monthly invoice to Invoice

4.6.2 2021-06-14 Sebastian Kirsche Send expiration date in card alias request

4.6.3 2021-08-03 Sebastian Kirsche Support sending customData when paying with a Byjuno
alias, Bugfixes

4.6.4 2021-08-13 Sebastian Kirsche Expose acquirerAuthorizationCode in DTBusinessError,
Bugfixes

4.6.5 2021-11-30 Sebastian Kirsche Bugfix for TWINT and PayPal, JSON API flow no longer sets
app callback scheme

4.6.6 2021-12-22 Sebastian Kirsche Updated Visa logo

4.6.7 2022-01-05 Sebastian Kirsche Support Simulator on Apple Silicon Macs

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 5/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Table of Contents

1 Introduction 9

1.1 Document Structure 9
1.2 Scope 9
1.3 Conventions 9

2 Overview 10

2.1 Payment Methods 10
2.2 Supported Platforms 10
2.3 Library Tasks 10
2.4 Payment Process 10
2.5 User Interface 11

3 Key Concepts 12

3.1 DTPaymentController 12
3.2 Library Invocation 12
3.3 Options 13
3.4 App Callback Notification 13
3.5 Merchant Notification 14
3.6 UI Customization 15
3.6.1 Dark mode 15
3.7 Hidden mode payments 16
3.8 Payment method registration (alias request) 16
3.8.1 Payment method selection/input by library (standard mode) 16
3.8.2 Card input by app (hidden mode) 17
3.8.3 (De-)Serialization to/from JSON of recurring payment method 17
3.9 Deferred Authorization 18
3.10 Error Handling 19
3.10.1 Technical Errors 20
3.10.2 Business Errors 20
3.10.3 Mistakes 20
3.11 Accessibility 20
3.12 New JSON API Flow 20
3.12.1 Credit card selection/input by app (hidden mode) 21

4 Mandatory settings 22

4.1 Credit Cards 22
4.1.1 NSCameraUsageDescription 22
4.2 TWINT 22
4.2.1 Define app callback scheme 22
4.2.2 Register TWINT schemes 22
4.3 PostFinance Card 23
4.3.1 Define app callback scheme 23
4.3.2 Register PostFinance scheme 23

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 6/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.4 SwissBilling 24
4.5 Apple Pay 24
4.5.1 Merchant ID 24
4.5.2 Get a CSR 25
4.5.3 Supported Networks (Cards) 25
4.5.4 Regular Payment 25
4.5.5 Configuration Options 25
4.5.6 Interactive Payment 26
4.5.7 Apple Pay Button 26
4.6 PayPal 27
4.7 Byjuno 27
4.8 SwissPass 27
4.9 POWERPAY 28
4.10 ELV / Lastschrift 28
4.11 Paysafecard 29

5 API 30

5.1 DTPaymentController 30
5.1.1 Class Methods 30
5.1.2 Instance Methods 33
5.1.3 Properties 34
5.2 DTPaymentControllerDelegate (protocol) 34
5.2.1 Class Methods 34
5.2.2 Instance Methods 34
5.3 DTPaymentRequest 35
5.3.1 Class Methods 35
5.3.2 Instance Methods 36
5.3.3 Properties 36
5.4 DTCardPaymentMethod 36
5.4.1 Class Methods 36
5.4.2 Instance Methods 36
5.4.3 Properties 36
5.5 DTRecurringPaymentMethod 36
5.5.1 Class Methods 37
5.5.2 Instance Methods 37
5.5.3 Properties 37
5.6 DTCreditCard 37
5.6.1 Class Methods 38
5.6.2 Instance Methods 38
5.6.3 Properties 38
5.7 DTELV 38
5.7.1 Class Methods 38
5.7.2 Instance Methods 39
5.7.3 Properties 39
5.8 DTPostFinanceCard 39
5.8.1 Class Methods 39
5.8.2 Instance Methods 40
5.8.3 Properties 40
5.9 DTPayPal 40
5.9.1 Class Methods 40
5.9.2 Instance Methods 40

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 7/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.9.3 Properties 41
5.10 DTReka 41
5.10.1 Class Methods 41
5.10.2 Instance Methods 41
5.10.3 Properties 41
5.11 DTPaymentOptions 42
5.11.1 Class Methods 42
5.11.2 Instance Methods 42
5.11.3 Properties 42
5.12 DTVisualStyle 44
5.12.1 Class Methods 44
5.12.2 Instance Methods 44
5.12.3 Properties 44
5.13 DTSimpleTextStyle 44
5.13.1 Class Methods 45
5.13.2 Instance Methods 45
5.13.3 Properties 45
5.14 DTShadowTextStyle 45
5.14.1 Class Methods 45
5.14.2 Instance Methods 45
5.14.3 Properties 45
5.15 DTAliasRequest 45
5.15.1 Class Methods 45
5.15.2 Instance Methods 45
5.16 DTSwissBillingPaymentInfo 46
5.16.1 Instance Methods 46
5.16.2 Properties 46
5.17 DTAddress 46
5.17.1 Instance Methods 46
5.17.2 Properties 46
5.18 DTDate 47
5.18.1 Instance Methods 47
5.19 DTBasketItem 47
5.19.1 Instance Methods 47
5.19.2 Properties 47
5.20 DTApplePayConfig 48
5.20.1 Class Methods 48
5.20.2 Instance Methods 48
5.20.3 Properties 48
5.21 DTApplePayDelegate 48
5.22 DTCustomer 49
5.22.1 Instance Methods 49
5.22.2 Properties 49
5.23 DTByjunoPaymentInfo 49
5.23.1 Instance Methods 49
5.23.2 Properties 49
5.24 DTAuthorizationRequest 50
5.24.1 Class Methods 50
5.24.2 Instance Methods 50
5.24.3 Properties 50
5.25 DTBusinessError 50
5.25.1 Class Methods 50
5.25.2 Instance Methods 51

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 8/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.25.3 Properties 51
5.26 DTSwissPassPaymentInfo 51
5.26.1 Instance Methods 51

6 Library Integration 52

6.1 Package Contents 52
6.2 Xcode Integration 52
6.3 Simulator support on Apple Silicon Macs 53

7 Known Issues 55

7.1 Bitcode 55

8 Appendix 56

8.1 List of Illustrations 56
8.2 List of Code Listings 56
8.3 List of Tables 56

Datatrans iOS Payment Library
Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 9/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

1 Introduction
Datatrans AG, leading Swiss payment service provider, has developed Datatrans iOS
Payment Library (DTiPL). DTiPL allows application developers to use Datatrans AG’s credit
card payment services natively on iPhones and iPads. This manual provides guidance on
library installation, invocation, and other issues of importance to developers who wish to
integrate DTiPL into their mobile applications.

1.1 Document Structure

Chapter 1 – Introduction
Explains this document’s structure and content.

Chapter 2 – Overview
Gives an overview of the Datatrans iOS Payment Library.

Chapter 3 – Key Concepts
Explains key concepts of DTiPL and discusses some of the most common use cases.

Chapter 4 – API
Contains detailed API documentation.

Chapter 5 – Integration
Explains library installation and integration into Xcode.

1.2 Scope

This document provides information on using DTiPL to create mobile commerce apps on
iPhone and iPad devices. As such, it is primarily aimed at developers of iOS applications.

It is assumed that the reader is already familiar with Datatrans AG’s products and
services. Also, knowledge of the Objective-C programming language, UIKit, as well as
basic understanding of Xcode are required. Covering these topics is beyond the scope of
this document.

1.3 Conventions

Throughout this document, the following styles are used:

Name
Emphasized technical terms, organization/product names

Path
File system paths, file names etc.

Class
Class and method names

 void codeSample() {
 code(); // sample code
 }

Code listings

<replaceable>
Text meant to be replaced with data by the developer

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 10/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

2 Overview

2.1 Payment Methods

The library currently supports the following cards: VISA, Mastercard, Diners Club,
American Express, JCB, UATP, Manor MyOne, Discover and Coop Supercard. Additionally,
PayPal, PostFinance Card/ E-Finance, Swisscom Easypay, German Lastschriftverfahren
(ELV), SwissBilling, Byjuno, TWINT, Reka, Apple Pay, SwissPass, POWERPAY, Paysafecard
and Boncard (Lunch-Check) are supported.

2.2 Supported Platforms

Apple devices with iOS 11.0 or higher are supported. The library has been localized for
English, French, German, Italian, and Dutch.

2.3 Library Tasks

The payment library is responsible for the following tasks:

• Validation: credit card number, expiration date and CVV are validated online.

• Authentication: if merchant and credit card are enrolled with 3-D Secure services,
authentication ensures that the card is being used by its legitimate owner.

• Authorization: if amount and currency are valid and within the card’s limit, the
payment transaction is authorized and can be completed by the merchant once goods
are being delivered (settlement process).

2.4 Payment Process

Figure 2-1 gives an overview of the shopping and payment process on the iOS device.

Figure 2-1: Payment process overview

&KHFNRXW

3DVVHV�UHIQR��¬�
SD\PHQW�LQIR�

0HUFKDQW

%DFNHQG

5HWXUQV�UHIQR���
SD\PHQW�LQIR

6KRSSLQJ

$SS

'DWDWUDQV

/LEUDU\

'DWDWUDQV

%DFNHQG

$XWKRUL]DWLRQ�UHVXOW
$XWKRUL]DWLRQ�UHVXOW

0RELOH�$SS

6HWWOHPHQW�UHTXHVW

3RVW�FDOOEDFN�WR�PHUFKDQW

$XWKHQWLFDWLRQ���
$XWKRUL]DWLRQ�

6HOHFWLRQ�RI

JRRGV��

VHUYLFHV

2UGHU

SURFHVVLQJ

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 11/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

The following steps occur during a successful session:

1. Host app: user selects goods/services to buy from a merchant. When the user
proceeds to checkout, complete order information is sent to the merchant’s server. In
return, the app receives a transaction reference number (refno).

2. App passes payment information and refno to DTiPL.

3. In a series of network calls and user interactions, the library performs all necessary
steps to authenticate the user (including 3-D Secure) and authorize the purchase.

4. Transaction is authorized in the background.

5. When authorization is completed, the merchant's server is informed by Datatrans
AG’s server. The previously supplied refno (see step 1) is used to identify and execute
the order.

6. App control is given back to the main app component via callback.

7. Merchant server makes settlement request to Datatrans server.

2.5 User Interface

Figure 2-2 shows how the payment process is presented to the app user. The library can
be invoked with or without payment method selection. If a credit card has been used for
a previous order, an alias can be supplied to directly proceed to authentication and/or
authorization steps (first two screens skipped). An app may also choose to implement its
own payment method selection. In this case, the first screen is not displayed.

Figure 2-2: Library screen shots

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 12/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

3 Key Concepts

3.1 DTPaymentController

The library’s core component is the DTPaymentController class. It must be invoked on an
existing UINavigationController instance. The payment controller pushes its own view
controllers on top of existing ones. The navigation bar is used to navigate back and forth
between library screens.

At the bottom of the screen, a toolbar with a cancel button is displayed. Previous
toolbar/navigation bar items are kept and restored when the payment controller is
dismissed.

When the payment process is finished, a delegate method is invoked to put the app back
in control. At this point, the app may choose to push additional view controllers (e. g. thank
you screen) or just dismiss the payment view controller.

This navigation-based design as well as customizable colors and fonts allow payment to
be put into a bigger checkout process unobtrusively, and make it look like an integral part
of the host application.

3.2 Library Invocation

Prior to library invocation, the host app must obtain a unique transaction reference
number (refno) to identify the order. This is typically done by sending complete order
information (basket contents, shipping information etc.) to the merchant’s web server. The
server generates a refno that is stored along with the order and sends it back to the
mobile device. Optionally, the server also returns the HMAC-SHA256 signature for
additional payment security.

The library is invoked with refno, merchant ID, and pricing information. Alternatively, the
library can be invoked in hidden mode. In hidden mode, credit card information is also
supplied by the app. The payment method selection screens are then skipped and
authentication and/or authorization take place immediately.

Listing 3-1 shows an example of how DTiPL is invoked in standard mode.

 DTPaymentRequest* paymentRequest = [[DTPaymentRequest alloc] init];
 paymentRequest.amountInSmallestCurrencyUnit = 1000;
 paymentRequest.currencyCode = @"CHF";
 paymentRequest.localizedPriceDescription = @"CHF 10.-";
 paymentRequest.merchantId = @"12345";
 paymentRequest.refno = @"refno12345";

 NSArray* paymentMethods = [DTPaymentController allAvailablePaymentMethods];

 DTPaymentController* paymentController = [DTPaymentController
 paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 paymentMethods:paymentMethods];

 // set some options here... (see next chapter)

 [paymentController presentInNavigationController:self.navigationController
 animated:YES];

Listing 3-1: DTPaymentController invocation in standard mode

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 13/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Some notes:

• Payment methods can be adjusted to include only methods supported by the
merchant, e.g. for merchants without Diner’s Club contract,
DTPaymentMethodDinersClub should not be present in the paymentMethods array.

• Default styles are used in this example, see section 3.6 for customized styles.

• No signature is used in this example.

3.3 Options

The payment controller can be configured with a number of options. For example, if the
library is supposed to connect to the Datatrans test system instead of production servers,
the testing option must be enabled. Listing 3.2 shows a sample configuration.

In this example:

• the library is invoked in test mode

• a back button is displayed in the upper left corner of the start screen

• the library shows the credit card holder field, but doesn’t force the user to fill it in

• the library tries to acquire an alias for future PostFinance Card payments

See section 5.11 for a list of all options.

 ...
 DTPaymentController* paymentController = [DTPaymentController
 paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 paymentMethods:paymentMethods];

 paymentController.paymentOptions.testing = YES;
 paymentController.paymentOptions.showBackButtonOnFirstScreen = YES;
 paymentController.paymentOptions.cardHolder = DTPaymentCardHolderOptional;
 paymentController.paymentOptions.returnsAlias = YES;

 [paymentController presentInNavigationController:self.navigationController
 animated:YES];
 ...

Listing 3-2: DTPaymentOptions example

3.4 App Callback Notification

The app must register a DTPaymentControllerDelegate delegate with the payment
controller. The delegate is notified when payment is finished (success, error, or user
cancellation).

After successful payment, the app can retrieve payment method information from the
payment controller. This information can be stored for future payments in hidden mode.

Aliases for future/recurring payments are returned if option returnsAlias is enabled. For
credit card aliases, additional return options exist, which can be configured with option
returnsCreditCard.

Listing 3-3 contains a delegate notification code sample. Please note:

• It is impossible to securely store credit card information on the device or server without
prompting the user for his or her password every time. However, considerable effort is
necessary to access data on an iPhone/iPad and even more so to understand how this

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 14/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

data was stored on the device. It is therefore acceptable to store the alias in encrypted
form on the iOS device if the user gives permission to do so.

• In the example, the payment controller is simply dismissed, meaning that the screen
before DTiPL invocation reappears. Typically, the app would push yet another screen
(success screen) on top of the last view controller and then remove everything using
[controller.naviationController popToRootViewControllerAnimated:YES] or pop to
some other view, i.e. last view before the checkout (not payment) process.

 - (void)paymentControllerDidFinish:(DTPaymentController *)controller {
 if (controller.recurringPaymentMethod != nil) {
 DTRecurringPaymentMethod* recurring = controller.recurringPaymentMethod;
 // store recurring payment details securely on server...
 NSString* alias = recurring.alias;
 if ([recurring isKindOfClass:DTCreditCard.class]) {
 DTCreditCard* cc = (DTCreditCard *)recurring;
 NSString* holder = cc.cardHolder;
 NSString* maskedCC = cc.maskedCC;
 //...
 } else if ([recurring isKindOfClass:DTPostFinanceCard.class]) {
 DTPostFinanceCard * pfc = (DTPostFinanceCard *)recurring;
 NSString* maskedCC = pfc.maskedCC;
 //...
 } else if ([recurring isKindOfClass:DTPayPal.class]) {
 DTPayPal* pp = (DTPayPal *)recurring;
 NSString* email = pp.email;
 //...
 }

 // or serialize the payment method and store locally...
 NSData* data = [recurring data];
 // store data encrypted on device (app responsible for encryption)
 // Use [DTRecurringPaymentMethod recurringPaymentMethodWithData:data]
 // to deserialize.
 }
 [controller dismissAnimated:YES];
 }

Listing 3-3: Delegate notification on success

3.5 Merchant Notification

On successful authorization, Datatrans AG’s authorization server invokes the merchant’s
postURL as defined by field URL Post in Datatrans Web Admin. Among other information,
fields shown in Listing 3-4 are posted as form post or XML post. The merchant’s web server
retrieves payment information previously stored with the same refno and matches
currency code and amount. It then executes the order and performs transaction
settlement with Datatrans using the returned uppTransactionId value.

For additional information, please refer to the online documentation.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 15/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 amount=1000
 currency=CHF
 pmethod=VIS
 refno=refno12345
 uppTransactionId=100916141012915292
 acqAuthorizationCode=982889
 authorizationCode=915285337
 responseCode=01

 // if available
 aliasCC=70323122544331174
 expy=21
 expm=12

Listing 3-4: postURL fields

3.6 UI Customization

Many colors and fonts used by payment views are customizable. For this purpose, a
DTVisualStyle object can be set on the payment controller as shown in Listing 3-5. In this
example, only the background color is set. For a conclusive list of display options, see API
section 5.12.

 DTPaymentController* paymentController = [DTPaymentController
 paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 paymentMethods:paymentMethods];

 DTVisualStyle* style = [DTVisualStyle defaultStyle];
 style.backgroundColor = [UIColor blackColor];

 paymentController.visualStyle = style;

Listing 3-5: Applying custom style

Note that DTVisualStyle does not cover navigation bar color and toolbar color. These
colors must be set on the app’s UINavigationController directly or controlled with
UIAppearance.

3.6.1 Dark mode
The library supports light and dark mode using adaptive UIColors introduced with iOS 13
(see Apple’s official documentation1). It is also possible to change just the color for one
style. This can be done by calling colorWithDTLightStyleColor or
colorWithDTDarkStyleColor on the UIColor set on the DTVisualStyle. Check Listing 3-6 for
an example.

 style.backgroundColor =
 [style.backgroundColor colorWithDTDarkStyleColor:[UIColor whiteColor]];

Listing 3-6: Applying a custom color on the dark style only

1 https://developer.apple.com/documentation/appkit/supporting_dark_mode_in_your_interface

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 16/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

3.7 Hidden mode payments

In hidden mode, no payment selection takes place in the library. The app has to provide a
recurring payment method (alias) from a previous transaction or payment method
registration (see section 3.8), or complete card data as entered into the app’s own
payment selection screen. Note that for security reasons, card number and CVV must not
be stored by the app under any circumstances! If no payment can take place at the
moment of data entry, credit card data has to be discarded, or, at the very least, an alias
has to be created. Listing 3-7 shows an invocation of the payment controller with a
recurring payment method.

 // aliasPaymentMethod from previous transaction
 DTRecurringPaymentMethod* aliasPaymentMethod = ...;

 DTPaymentController* pc;
 pc = [DTPaymentController paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 recurringPaymentMethod:aliasPaymentMethod];
 [pc presentInNavigationController: navigationController animated:YES];

Listing 3-7: Recurring payment in hidden mode

A MyOne sample payment in hidden mode with raw card data is shown in Listing 3-8.

 DTCardPaymentMethod* card = [[DTCardPaymentMethod alloc]
 initWithPaymentMethod:DTPaymentMethodMyOne
 number:@"6004520200668702072"
 expMonth:12
 expYear:2021
 cvv:@"123"
 holder: @"Max Muster"];
 DTPaymentController* pc;
 pc = [DTPaymentController paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 cardPaymentMethod:card];
 [pc presentInNavigationController:self.navigationController animated:YES];

Listing 3-8: Hidden mode payment with card data

3.8 Payment method registration (alias request)

The library supports creating credit card, PostFinance Card, Easypay, Reka, ELV, TWINT,
SwissPass, POWERPAY, Boncard (Lunch-Check) and Byjuno alias numbers without making
a payment. Aliases are allowed to be stored by the app and can be used for future hidden
mode payments.

When creating an alias for cards, the app can either use its own card input screen and
pass the data to the library or let the library manage payment method input. For all other
payment methods, the library manages the registration and any user input.

3.8.1 Payment method selection/input by library (standard mode)
In this mode, the library’s input screens are used to gather data for alias generation.
DTPaymentOptions and DTVisualStyle options can be used to control test/production
mode and cell styling. Credit card data is automatically verified in this mode with a test
authorization of a small amount.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 17/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Listing 3-9 shows creation of a credit card alias in testing mode. The app is notified when
the alias is available, see Listing 3-10.

 NSArray* paymentMethods = [NSArray arrayWithObjects:DTPaymentMethodVisa,
 DTPaymentMethodMyOne, DTPostFinanceCard, nil];

 DTAliasRequest* ar = [[DTAliasRequest alloc] initWithMerchantId:merchantId
 currencyCode:currencyCode
 paymentMethods:paymentMethods];

 DTPaymentController* pc = [DTPaymentController
 paymentControllerWithDelegate:self aliasRequest:ar];

 pc.paymentOptions.testing = YES;
 pc.paymentOptions.showBackButtonOnFirstScreen = YES;
 [pc presentInNavigationController:self.navigationController animated:YES];

Listing 3-9: Creation of credit card alias in standard mode

- (void)paymentControllerDidFinish:(DTPaymentController *)controller {
 // the same as with regular payments, alias payment method stored in
 // controller.recurringPaymentMethod property
}

Listing 3-10: Alias notification

3.8.2 Card input by app (hidden mode)
In this mode, the library is invoked with the necessary credit card data. The library
generates an alias and verifies the given credit card with a test authorization transaction.

Listing 3-11 shows creation of a credit card alias in testing mode. The app is notified as
usual via the delegate. Note that this example will fail because the given credit card data
is not valid.

 DTCardPaymentMethod* card = [[DTCardPaymentMethod alloc]
 initWithPaymentMethod:DTPaymentMethodVisa number:@"4444333322221111"
 expMonth:12 expYear:2021 cvv:@"123" holder:nil];

 DTAliasRequest* ar = [[DTAliasRequest alloc] initWithMerchantId:merchantId
 currencyCode:currencyCode cardPaymentMethod:card];

 DTPaymentController* pc = [DTPaymentController
 paymentControllerWithDelegate:self aliasRequest:ar];

 pc.paymentOptions.testing = YES;
 [pc presentInNavigationController:self.navigationController animated:YES];

Listing 3-11: Creation of credit card alias in hidden mode

3.8.3 (De-)Serialization to/from JSON of recurring payment method
Alias data returned by the library after a successful transaction or registration needs to
be stored for future payments. To facilitate this process and to have a platform
independent solution, the library can serialize the DTRecurringPaymentMethod object to
a JSON string which, for example, can then be sent to a server or stored locally. If stored
locally on the device, appropriate encryption techniques should be applied to protect the
data from unauthorized access.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 18/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

As soon as the user wants to pay with the alias, the previously saved JSON can be
deserialized to a DTRecurringPaymentMethod. See Listing 3-12 for an example
implementation.

 NSString* json = [recurringPaymentMethod JSON];
 // save the JSON string, e.g. on a server
 // ...
 // User decides to pay with the alias, retrieve JSON
 paymentMethod = [DTRecurringPaymentMethod recurringPaymentMethodWithJSON:json];

Listing 3-12: (De-)Serialization to/from JSON of a DTRecurringPaymentMethod

Important: Even if an app has its own credit card input dialog it must never store the
original credit card number or CVV.

3.9 Deferred Authorization

Sometimes the payment amount is unknown when the user initiates a long-running
business transaction. An example would be a check-in / check-out train journey. This can
usually be done by server-to-server authorization once the amount is known using a
payment method alias.

In case of Apple Pay, it is not possible to receive an alias for future server-to-server
transactions. However, it is possible to obtain a partially authorized transactionId for
deferred completion. This process is shown in Figure 3-1, again using a check-in and check-
out example.

To achieve this:

• Perform regular Apple Pay payment with option skipAuthorizationCompletion=YES

• Create an Apple Pay summary item using a non-final amount (must be greater than 0)
and type PKPaymentSummaryItemTypePending (see Listing 3-13)

• As soon as the amount is known, you can either authorize the payment server-to-
server (authorizationSplit) or invoke the library again

See Listing 3-14 for an example implementation.

 PKPaymentSummaryItem* summaryItem = [[PKPaymentSummaryItem alloc] init];
 summaryItem.label = @"Merchant name";
 summaryItem.type = PKPaymentSummaryItemTypePending;
 summaryItem.amount = [NSDecimalNumber decimalNumberWithString:@"1"];
 options.applePayConfig.request.paymentSummaryItems = @[summaryItem];

Listing 3-13: Summary items for deferred Apple Pay authorization

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 19/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Figure 3-1: Flow of a payment with deferred authorization (Apple Pay)

 // Select / register a payment method
 DTPaymentController* pc = [DTPaymentController
 paymentControllerWithDelegate:self aliasRequest:ar];

 // -----

 // Check-in: in case of Apple Pay get a transactionId for future completion
 DTPaymentController* pc;
 pc = [DTPaymentController paymentControllerWithDelegate:self
 paymentRequest:paymentRequest
 paymentMethods:@[DTPaymentMethodApplePay]];
 pc.paymentOptions.skipAuthorizationCompletion = YES; // summary items etc.
 [pc presentInNavigationController:self.navigationController animated:YES];
 //...
 - (void)paymentControllerDidFinish:(DTPaymentController *)controller {
 // get the transaction id and store for actual payment
 }

 // -----

 // Check-out:
 // use transaction id, refno and final amount for the actual authorization
 // (server-to-server, or paymentControllerWithDelegate:authorizationRequest:)

Listing 3-14: Example implementation of deferred payment authorization (Apple Pay)

3.10 Error Handling

There are three kinds of errors:

• Technical errors: network interruption, memory or I/O errors

• Business errors: 3-D authentication failure, authorization failure

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 20/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

• Mistakes: typo or missing field

3.10.1 Technical Errors
The library is built with the policy that recoverable technical errors lead to non-fatal error
messages. The user is lead to the previous screen and encouraged to try again.

3.10.2 Business Errors
The policy for business errors is that the payment process is aborted immediately. In these
cases, the payment method identifier is set in the user info of the error that will be
returned (key DTPaymentMethodKey). In addition, the user info holds an underlying error
of type DTBusinessError that contains more information.

Note: The DTPaymentController has to be dismissed and the payment restarted in case of
a business error.

 NSString* identifier = [error.userInfo objectForKey:DTPaymentMethodKey];
 if ([identifier isEqualToString:DTPaymentMethodVisa]) {
 // handle VISA payment error
 }

 DTBusinessError* underlyingError =
 (DTBusinessError *)[error.userInfo objectForKey:NSUnderlyingErrorKey];
 if (underlyingError. acquirerErrorCode != nil) {
 // use acquirer error code for detailed/specific error handling
 }
[controller dismissAnimated:YES];

Listing 3-15: Get payment method and underlying error from NSError

3.10.3 Mistakes
Mistakes are caught by the app if easily possible (plausibility checks). The user is given the
possibility to make a correction. Everything else is treated as business error.

3.11 Accessibility

The library supports Apple’s Accessibility feature for people with disabilities and for
automated UI testing. Controls have their accessibility label set to their title text. Credit
card input fields are labeled as seen in Table 3-1.

Accessibility label Description

Credit Card Number Credit card number text field (UITextField)

Expiry Date Credit card expiration date text field

CVV Code CVV2/CVC2 code text field

Card Holder Credit card holder text field

Save Credit Card Save credit card number switch (UISwitch)

Table 3-12: Accessibility labels

3.12 New JSON API Flow

In the new JSON API flow, a payment or alias registration is initialized using the new Datatrans
backend API (https://api-reference.datatrans.ch/json/#tag/v1transactions). In order to invoke
the library, a mobileToken has to be requested in the initialize transaction API call. This is done
by adding returnMobileToken=true on the OptionRequest. This token can then be used to
invoke the DTPaymentController without providing any payment details.
Note: A new mobile token has to be requested for every invocation of the library.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 21/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 NSString* mobileToken = [self initializePaymentInBackend];

 DTPaymentController* paymentController = [DTPaymentController
 paymentControllerWithDelegate:self
 mobileToken:mobileToken];

 // set some options here...

 [paymentController presentInNavigationController:self.navigationController
 animated:YES];

Listing 3-16: Invoking the library using the new API flow

Moreover, various parameters from the DTPaymentOptions object can be added to the initial
request to the Datatrans backend. Refer to the online documentation to see which ones are
supported.

3.12.1 Credit card selection/input by app (hidden mode)
If the credit card selection and input is handled by the merchant app, the details must not
be sent in the initial request to the Datatrans backend. Instead, the credit card
information should be passed to the DTPaymentController.

 NSString* mobileToken = [self initializePaymentInBackend];

 DTCardPaymentMethod* card = [[DTCardPaymentMethod alloc]
 initWithPaymentMethod:DTPaymentMethodVisa number:@"4444333322221111"
 expMonth:12 expYear:2021 cvv:@"123" holder:nil];

 DTPaymentController* pc = [DTPaymentController
 paymentControllerWithDelegate:self
 mobileToken:mobileToken
 cardPaymentMethod:card];

 pc.paymentOptions.testing = YES;
 [pc presentInNavigationController:self.navigationController animated:YES];

Listing 3-17: Hidden mode credit card payment using the new API flow

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 22/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4 Mandatory settings
For some payment methods a number of configuration steps are required, otherwise
payment transactions will fail.

4.1 Credit Cards

4.1.1 NSCameraUsageDescription
Unless your app disables credit card scanning, you have to add the
NSCameraUsageDescription to the app’s info.plist. Refer to Figure 4-2 on how to achieve
this. This step is not necessary if your app already uses the camera.

Figure 4-1: Mandatory NSCameraUsageDescription setting

4.2 TWINT

4.2.1 Define app callback scheme
The TWINT app on the user’s device has to call back into the shopping app during TWINT
transactions. In order to do this, a URL scheme has to be defined in the app’s info.plist
(Figure 4-2) and configured via DTPaymentOptions.appCallbackScheme (Listing 4-1).

Please note that there is no need to define a new scheme just for TWINT. Just set the
appCallbackScheme option if you already have a scheme defined. However, keep in mind
that the scheme must be unique to the shopping app. Do not use actual protocols or file
types such as “http”, “mailto”, “pdf” etc., generic names like “ticket”, and especially do not
use “twint”.

Figure 4-2: Application URL scheme definition

 paymentController.paymentOptions.appCallbackScheme = @"acmecorp-bestapp";

Listing 4-1: TWINT URL scheme option

4.2.2 Register TWINT schemes
In order to invoke TWINT apps on the user’s device, your app needs to register all known
TWINT schemes. To do this, the entries in Listing 4-2 need to be added to the app’s info.plist
file (LSApplicationQueriesSchemes).

If this is neglected, the library does not find any installed TWINT app, let alone open them.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 23/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 <key>LSApplicationQueriesSchemes</key>
 <array>
 <string>twint-issuer1</string>
 <string>twint-issuer2</string>
 <string>twint-issuer3</string>
 <string>twint-issuer4</string>
 <string>twint-issuer5</string>
 <string>twint-issuer6</string>
 <string>twint-issuer7</string>
 <string>twint-issuer8</string>
 <string>twint-issuer9</string>
 <string>twint-issuer10</string>
 <string>twint-issuer11</string>
 <string>twint-issuer12</string>
 <string>twint-issuer13</string>
 <string>twint-issuer14</string>
 <string>twint-issuer15</string>
 <string>twint-issuer16</string>
 <string>twint-issuer17</string>
 <string>twint-issuer18</string>
 <string>twint-issuer19</string>
 <string>twint-issuer20</string>
 <string>twint-issuer21</string>
 <string>twint-issuer22</string>
 <string>twint-issuer23</string>
 <string>twint-issuer24</string>
 <string>twint-issuer25</string>
 <string>twint-issuer26</string>
 <string>twint-issuer27</string>
 <string>twint-issuer28</string>
 <string>twint-issuer29</string>
 <string>twint-issuer30</string>
 <string>twint-issuer31</string>
 <string>twint-issuer32</string>
 <string>twint-issuer33</string>
 <string>twint-issuer34</string>
 <string>twint-issuer35</string>
 <string>twint-issuer36</string>
 <string>twint-issuer37</string>
 <string>twint-issuer38</string>
 <string>twint-issuer39</string>
 <string>twint-issuer40</string>
 <string>twint-issuer41</string>
 <string>twint-issuer42</string>
 <string>twint-issuer43</string>
 <string>twint-issuer44</string>
 <string>twint-issuer45</string>
 <string>twint-issuer46</string>
 <string>twint-issuer47</string>
 <string>twint-issuer48</string>
 <string>twint-issuer49</string>
 <string>twint-issuer50</string>
 </array>

Listing 4-2: Mandatory TWINT schemes to be added to info.plist

4.3 PostFinance Card

PostFinance Card supports two ways to authenticate the user: in a web view which is
handled by the library or by switching to the PostFinance app. For the latter, following
settings are needed.

4.3.1 Define app callback scheme
If you have not already worked through section 4.2.1 of this document, please do so as the
setting is the same for PostFinance Card.

4.3.2 Register PostFinance scheme
In order to invoke the PostFinance app on the user’s device, your app needs to register the
PostFinance scheme. To do this, the entry in Figure 4-3 needs to be added to the app’s
info.plist file.

If this is neglected, the library does not find an installed PostFinance app, let alone open
it.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 24/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Figure 4-3: Mandatory PostFinance scheme to be added to info.plist

4.4 SwissBilling

For SwissBilling transactions, a DTCustomer (see section 5.22) has to be created and
configured via DTPaymentOptions.customer. In addition, an optional
DTSwissBillingPaymentInfo (see section 5.16) can be initialized and set via
DTPaymentOptions.swissBillingPaymentInfo. An example implementation for both
configurations is given in Listing 4-3.

 DTAddress* address = [[DTAddress alloc] initWithFirstName:@"Good"
 lastName:@"Customer"
 street:@"Limmatquai 55"
 zipCode:@"8001"];
 address.city = @"Zürich";
 address.countryCode = @"CH";

 DTCustomer* customer = [[DTCustomer alloc] init];
 customer.address = address;
 customer.phone = @"+41584333034";
 customer.mailAddress = @"eshop@example.com";
 customer.birthDate = [[DTDate alloc] initWithYear:1969 month:9 day:19];
 paymentController.paymentOptions.customer = customer;

 DTSwissBillingPaymentInfo* info = [[DTSwissBillingPaymentInfo alloc] init];
 // additional configuration of SwissBillingPaymentInfo
 paymentController.paymentOptions.swissBillingPaymentInfo = info; // optional

Listing 4-3: SwissBilling payment

4.5 Apple Pay

4.5.1 Merchant ID
In order to use Apple Pay in your App you need to register a merchant ID in your developer
account’s Certificates, Identifiers & Profiles section. Your app then needs to be configured
with Apple Pay capabilities (Target -> Capabilities -> Apple Pay) and entitlements. Figure
4-4 shows what the configuration should look like in Xcode.

Figure 4-4: Apple Pay Capability

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 25/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.5.2 Get a CSR
A Certificate Signing Request (CSR) is needed to create a payment processing certificate
for your merchant ID on developer.apple.com. The CSR can be downloaded in the
Datatrans webadmin tool under UPP Administration > UPP Security > Apple Pay Key and
certificate (“Download CSR File”).

After creating the payment processing certificate, you need to upload the certificate in
the Datatrans webadmin tool (“Import new certificate”).

4.5.3 Supported Networks (Cards)
Apple Pay must be configured with the list of card types supported by the merchant’s
acquirer, usually at least Visa and Mastercard. If you would like to support other cards,
e.g. American Express, please check with Datatrans support (support@datatrans.ch) or
ask your acquirer.

Card types are configured via supportedNetworks parameter as an array of
PKPaymentNetwork string constants (see code example below).

4.5.4 Regular Payment
There are several possibilities to use the library as described in this and the following
sections.

If you want to use Apple Pay just like any other payment method, you only have to provide
your registered merchant ID and supported card types as shown in Listing 4-4 and add
DTPaymentMethodApplePay to the list of payment methods you want to support.

Note that the library determines whether Apple Pay is present and hides that payment
method if the device is not configured for Apple Pay.

DTPaymentController* controller = [DTPaymentController ...

NSArray* supportedNetworks = @[PKPaymentNetworkVisa, PKPaymentNetworkMasterCard];
DTApplePayConfig* ap = [[DTApplePayConfig alloc]
 initWithMerchantIdentifier:@"merchant.com.acme.bestapp"
 supportedNetworks:supportedNetworks];
controller.paymentOptions.applePayConfig = ap;

Listing 4-4: Configure Apple Pay for payments

4.5.5 Configuration Options
Apple Pay can be configured to request additional information from users, such as the
shipping address or shipping type. It can also be set up to show more information than
just the payment total. These settings are configured via PKPaymentRequest object (see
official Apple Pay documentation for more information). The request object can be
obtained and configured as shown in Listing 4-5. In this example, users are required to
enter their postal and email addresses.

Note that user input must be handled by the invoking app via delegation. See next section
for more information.

DTApplePayConfig* ap = [[DTApplePayConfig alloc] ... // see regular payment
ap.request.requiredShippingAddressFields = PKAddressFieldPostalAddress |
 PKAddressFieldEmail;
controller.paymentOptions.applePayConfig = ap;

Listing 4-5: More Apple Pay configuration options

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 26/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.5.6 Interactive Payment
If you want to have full control over the Apple Pay process, you can register a
DTApplePayDelegate object. This allows you to respond interactively to a user’s actions.
For example, you can calculate a new payment total based on the selected payment
method or you can add an additional fee for the selected shipping method.

In the example in Listing 4-6 two shipping methods are configured and the delegate set.

DTApplePayConfig* ap = [[DTApplePayConfig alloc] ... // see regular payment

PKShippingMethod* sm1 = [[PKShippingMethod alloc] init];
sm1.identifier = @"N";
sm1.label = @"Free shipping";
sm1.detail = @"Ships within 48 hours";
sm1.amount = [NSDecimalNumber decimalNumberWithString:@"0.00"];

PKShippingMethod* sm2 = [[PKShippingMethod alloc] init];
sm2.identifier = @"E";
sm2.label = @"Express delivery";
sm2.detail = @"Delivered within 24 hours";
sm2.amount = [NSDecimalNumber decimalNumberWithString:@"10.00"];

ap.request.shippingMethods = [NSArray arrayWithObjects:sm1, sm2, nil];
ap.delegate = self;

controller.paymentOptions.applePayConfig = ap;

Listing 4-6: Set the DTApplePayDelegate for interactive updates

The delegate’s didSelectShippingMethod method is invoked when a user chooses or
changes the shipping method. The new payment total (new summary items) can then be
calculated based on the selected method (Listing 4-7).

- (void)paymentAuthorizationViewController:(PKPaymentAuthorizationViewController
 *)controller didSelectShippingMethod:(PKShippingMethod *)shippingMethod
 completion:(void (^)(PKPaymentAuthorizationStatus,
 NSArray<PKPaymentSummaryItem *> *))completion {
 NSMutableArray* summaryItems = [NSMutableArray array];
 ... // create new summary items based on ‘shippingMethod’ and call completion
 completion(PKPaymentAuthorizationStatusSuccess, summaryItems);
}

Listing 4-7: Update summary items / payment total

DTApplePayDelegate‘s delegate methods are taken directly from Apple’s
PKPaymentAuthorizationViewControllerDelegate definition and behave in the exact
same way. For more information, please consult the official Apple Pay documentation.

4.5.7 Apple Pay Button
If you want to use a stand-alone Apple Pay button in your app, please do so by following
Apple’s guidelines. Once the user has pressed the button, configure the payment library
as described above and set Apple Pay as the sole accepted payment method (Listing 4-8).
Apple Pay will then start directly without additional library screens.

 NSArray* paymentMethods = [NSArray arrayWithObject:DTPaymentMethodApplePay];
 DTPaymentController* c = [DTPaymentController paymentControllerWithDelegate:self
 paymentRequest:request paymentMethods:paymentMethods];
 // additional Apple Pay configurations as explained above...

Listing 4-8: Direct invocation of Apple Pay

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 27/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

4.6 PayPal

To support PayPal payments, your app must define an app callback scheme and set the
appCallbackScheme option as described in section 4.2.1 (the same scheme can be used
for TWINT and PayPal).

4.7 Byjuno

For Byjuno transactions, a DTCustomer (see section 5.22) has to be created and configured
via DTPaymentOptions.customer. In addition, an optional DTByjunoPaymentInfo (see
section 5.23) can be initialized and set via DTPaymentOptions.byjunoPaymentInfo. An
example implementation for both configurations is given in Listing 4-9.

 DTAddress* address = [[DTAddress alloc] initWithFirstName:@"Mark"
 lastName:@"Uber"
 street:@"Amstelstrasse 11"
 zipCode:@"4123"];
 address.city = @"Allschwil";
 address.countryCode = @"CH";

 DTCustomer* customer = [[DTCustomer alloc] init];
 customer.customerId = @"10067822";
 customer.type = @"P";
 customer.gender = @"female";
 customer.address = address;
 customer.birthDate = [[DTDate alloc] initWithYear:1986 month:5 day:14];
 customer.language = @"DE";
 customer.mailAddress = @"h.mustermann@intrum.com";
 paymentController.paymentOptions.customer = customer;

 DTByjunoPaymentInfo* byjunoInfo = [[DTByjunoPaymentInfo alloc] init];
 byjunoInfo.subtype = @"INVOICE";
 byjunoInfo.deviceFingerprintId = @"deviceFingerprintId-test";
 paymentController.paymentOptions.byjunoPaymentInfo = byjunoInfo; // optional

Listing 4-9: Byjuno payment

4.8 SwissPass

For SwissPass transactions, there are four possible ways to configure the library:

• Doing nothing

• Provide a DTCustomer (see section 5.22)

• Provide a DTSwissPassPaymentInfo (see section 5.26)

• Provide both objects

The DTCustomer and DTSwissPassPaymentInfo can be set via
DTPaymentOptions.customer or DTPaymentOptions.swissPassPaymentInfo respectively.
Keep in mind that the user needs to put in the information that are not already provided.

If a DTCustomer is given, then the contents of the object must match the details stored in
the given SwissPass account. Example configurations are shown in Listing 4-10.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 28/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 DTAddress* address = [[DTAddress alloc]
 initWithFirstName:@"Anna"
 lastName:@"Deiss"
 street:@"SBB Personenverkehr - VS-VE-VS"
 zipCode:@"3000"];
 DTCustomer* customer = [[DTCustomer alloc] init];
 customer.address = address;
 customer.birthDate = [[DTDate alloc] initWithYear:1980 month:1 day:1];
 customer.mailAddress = @"anna.deiss@mail.com"; // optional
 customer.phone = @"+41 79 555 44 33"; // optional
 paymentController.paymentOptions.customer = customer;

 DTSwissPassPaymentInfo* swissPassInfo =
 [[DTSwissPassPaymentInfo alloc] initWithSwissPassCardNumber:@"S48681516807"
 swissPassZipCode:@"3000"];
 paymentController.paymentOptions.swissPassPaymentInfo = swissPassInfo;

Listing 4-10: SwissPass payment

4.9 POWERPAY

For POWERPAY transactions, a DTCustomer (see section 5.22) has to be created and
configured via DTPaymentOptions.customer. In addition to the default parameters, this
object must contain a gender and an address with a city. The date of birth can be omitted
but the user will be prompted to enter it manually in that case.

 DTAddress* address = [[DTAddress alloc]
 initWithFirstName:@"Max"
 lastName:@"Muster"
 street:@"via streccione 2"
 zipCode:@"6900"];
 address.city = @"Lugano"; // required

 DTCustomer* customer = [[DTCustomer alloc] init];
 customer.address = address;
 customer.gender = @"male"; // required
 customer.birthDate = [[DTDate alloc] initWithYear:1980 month:1 day:1]; // optional
 paymentController.paymentOptions.customer = customer;

Listing 4-11: POWERPAY payment

4.10 ELV / Lastschrift

If a customer address is required for ELV (contact Datatrans support if you are unsure), a
DTCustomer object has to be created and configured via DTPaymentOptions.customer,
see Listing 4-12.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 29/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

 DTAddress* address = [[DTAddress alloc]
 initWithFirstName:@"Max"
 lastName:@"Muster"
 street:@"Gutstrasse 12"
 zipCode:@"70197"];
 address.countryCode = @"DE";
 address.city = @"Stuttgart";

 DTCustomer* customer = [[DTCustomer alloc] init];
 customer.address = address;
 customer.gender = @"male";
 customer.birthDate = [[DTDate alloc] initWithYear:1980 month:1 day:1];
 customer.mailAddress = @"max.muster@mail.de";
 paymentController.paymentOptions.customer = customer;

Listing 4-12: ELV payment

4.11 Paysafecard

For Paysafecard transactions, a unique ID has to be set via
DTPaymentOptions.paysafecardMerchantClientId for identifying a customer. As an
example, this could be the unique ID of your customer as registered within your database.
If you are using the e-mail address or any other personal information, please encrypt it.

 paymentController.paymentOptions.paysafecardMerchantClientId = id;

Listing 4-13: Paysafecard payment

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 30/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5 API
This chapter contains the library class reference. Each Objective-C class is presented in its
own section.

Figure 4-5-1 gives an overview of the library’s classes.

Figure 4-5-1: Library classes

5.1 DTPaymentController

The DTPaymentController class is the library’s main entry point, see sections 3.1 and 3.2.
The payment controller displays credit card selection and authentication screens and
does all the necessary network calls in the background. The payment controller must be
invoked on an existing UINavigationController instance.

5.1.1 Class Methods

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

paymentRequest:(DTPaymentRequest *)request

paymentMethods:(NSArray *)methods

Creates and returns a new DTPaymentController object. The controller will display a
payment method selection screen with the given payment methods.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

request
The object containing payment information such as merchant ID, currency, amount,
refno etc.

methods
 An array of payment method string constants, i.e. one or more of:
DTPaymentMethodVisa, DTPaymentMethodMasterCard,
DTPaymentMethodDinersClub, DTPaymentMethodAmericanExpress, etc.

DTPaymentController

DTPaymentControllerDelegate

DTPaymentRequest DTCreditCard

DTVisualStyle

DTPaymentOptions

DTSimpleTextStyle

receives
calls back uses

uses uses

creates/uses

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 31/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

If only one method is supplied, the payment selection screen is skipped. This allows
for external payment method selection.

Payment methods can be visually grouped. To achieve this, add lists of payment
methods to the methods array. Only one level of grouping is supported, see Listing
5-1 for example.

 NSArray* creditCards = [NSArray arrayWithObjects:DTPaymentMethodVisa,
 DTPaymentMethodMasterCard,
 DTPaymentMethodAmericanExpress,
 DTPaymentMethodDinersClub,
 nil];
 NSArray* paypal = [NSArray arrayWithObjects:DTPaymentMethodPayPal, nil];
 NSArray* paymentMethods = [NSArray arrayWithObjects:creditCards, paypal, nil];

Listing 5-1: Grouping payment methods

Returns
a newly created and initialized DTPaymentController object in standard mode.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

 mobileToken:(NSString *)mobileToken;

Creates and returns a new DTPaymentController object for the new JSON API flow.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

mobileToken
 Mobile token which is returned by the Datatrans backend after calling the initialize
transaction API call.

Returns
a newly created and initialized DTPaymentController object for the JSON API flow.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

paymentRequest:(DTPaymentRequest *)request

cardPaymentMethod:(DTCardPaymentMethod *)cardPaymentMethod;

Creates and returns a new DTPaymentController object in hidden mode with card
information entered by the user. The controller will not display payment method
selection/entry screens and proceed to authentication/authorization directly.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

request
The object containing payment information such as merchant ID, currency, amount,
refno etc.

cardPaymentMethod
 Raw credit card information entered by the user in a previous step.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 32/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Returns
a newly created and initialized DTPaymentController object in hidden mode.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

 mobileToken:(NSString *)mobileToken

 cardPaymentMethod:(DTCardPaymentMethod *)cardPaymentMethod;

Creates and returns a new DTPaymentController object for the new JSON API flow.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

mobileToken
 Mobile token which is returned by the Datatrans backend after calling the initialize
transaction API call.

cardPaymentMethod
 Raw credit card information entered by the user in a previous step.

Returns
a newly created and initialized DTPaymentController object for the hidden mode JSON
API flow.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

paymentRequest:(DTPaymentRequest *)request

recurringPaymentMethod:(DTRecurringPaymentMethod *)recurringPM;

Creates and returns a new DTPaymentController object in hidden mode. The controller
will not display payment method selection/entry screens and proceed to
authentication/authorization directly.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

request
The object containing payment information such as merchant ID, currency, amount,
refno etc.

recurringPaymentMethod
Recurring payment information previously obtained from the controller after a
successful transaction, see sections 3.4 and 5.5.

Returns
a newly created and initialized DTPaymentController object in hidden mode.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

aliasRequest:(DTAliasRequest *)aliasRequest

Creates and returns a new DTPaymentController object for alias generation only (no
payment).

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 33/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Parameters
delegate

The delegate to receive success/error/cancellation notification.

aliasRequest
Alias request for standard/hidden mode alias generation.

Returns
a newly created and initialized DTPaymentController.

+ (id)paymentControllerWithDelegate:(id<DTPaymentControllerDelegate>)delegate

authorizationRequest:(DTAuthorizationRequest *)authorizationRequest

Creates and returns a new DTPaymentController object for authorizing a payment.

Parameters
delegate

The delegate to receive success/error/cancellation notification.

authorizationRequest
Authorization request for payment.

Returns
a newly created and initialized DTPaymentController object for a payment authorization.

+ (NSArray *)allAvailablePaymentMethods

Returns all available payment method constants.

Returns
an array of available payment method string constants.

5.1.2 Instance Methods

- (void)presentInNavigationController:animated

Shows the payment controller.

Parameters
controller

The navigation controller used to push payment view controllers.

animated
YES if view controllers are to be pushed animated, NO otherwise.

- (void)dismissAnimated:(BOOL)animated

Removes payment view controllers from the payment controller’s navigation controller.

Parameters
animated

YES if view controllers are to be popped animated, NO otherwise.

Attention: Do not perform view controller actions while an animation is taking place.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 34/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

For example dismissAnimated:YES immediately followed by
pushViewController:animated: will cause rendering issues. Only animate the last
action.

- (NSString *)paymentMethodIdentifier

The identifier of the payment method used for payment or alias registering.

5.1.3 Properties
@property (nonatomic, retain) DTVisualStyle* visualStyle

Display options (colors and fonts) for payment views. Optional property.

@property (nonatomic, copy) DTPaymentOptions* paymentOptions
Options unrelated to display style. Optional property.

@property (nonatomic, readonly) DTRecurringPaymentMethod* recurringPaymentMethod
Credit card or PF/PayPal alias information for future use in hidden mode. The property is only
available (not nil) after successful payment or alias request.

@property (nonatomic, readonly) NSString* transactionId
The ID of the last transaction if available. Call from paymentControllerDidFinish: or
paymentController:didFailWithError:

5.2 DTPaymentControllerDelegate (protocol)

The DTPaymentControllerDelegate protocol is used to receive notifications from
DTPaymentController. It must be implemented by the host application.

5.2.1 Class Methods
There are no class methods.

5.2.2 Instance Methods

- (void)paymentControllerDidFinish:(DTPaymentController *)controller

Invoked when authorization or alias generation has completed successfully. Alias
payment method is available via the recurringPaymentMethod property.

Parameters
controller

The payment controller responsible for this notification.

request
The payment request that has been completed successfully.

- (void)paymentController:(DTPaymentController *)controller

didFailWithError:(NSError *)error

Invoked when the payment transaction failed.

Parameters
controller

The payment controller responsible for this notification.

error
The error that has occurred. Possible error codes are specified in Table 5-1.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 35/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Error code Description

DTPaymentErrorTechnical Internal or technical error.

DTPaymentErrorValidation Credit card information was invalid.

DTPaymentErrorAuthentication Credit card holder could not be authenticated.

DTPaymentErrorAuthorization Payment could not be authorized for the specified credit
card.

Table 5-1: DTPaymentErrorCode codes

- (void)paymentController:(DTPaymentController *)controller

didCancelWithType:(DTPaymentCancellationType)cancellationType;

Invoked when the payment transaction has been canceled by the user.

Parameters
controller

The payment controller responsible for this notification.

cancellationType

 The reason why the transaction has been canceled. Possible values are specified in

Cancellation Type Description

DTPaymentCancellationTypeBackBut
ton

User pressed the back button on the first library screen.
Only possible if back button is enabled via
DTPaymentOptions.

DTPaymentCancellationTypeCancelB
utton

User pressed the Cancel button at the bottom of the
screen.

Table 5-2: DTCancellationType types

- (BOOL) paymentController:(DTPaymentController*)controller

shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)

orientation

Invoked when the device is rotated, see shouldAutorotateToInterfaceOrientation of class
UIViewController. If this optional method is not implemented, only portrait mode is
supported.

Parameters
orientation

The orientation of the application’s user interface after rotation. The possible values
are described in UIInterfaceOrientation.

5.3 DTPaymentRequest

The DTPaymentRequest class describes a payment transaction. It contains information
such as currency, amount, refno, merchant ID etc. The payment request is used when a
new DTPaymentController is created.

5.3.1 Class Methods
There are no class methods.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 36/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.3.2 Instance Methods
See properties.

5.3.3 Properties
@property (nonatomic, copy) NSString* merchantId

The merchant ID, supplied by Datatrans AG.

@property (nonatomic, copy) NSString* refno
The refno, supplied by the merchant’s server.

@property (nonatomic, copy) NSString* currencyCode
The currency code (ISO 4217).

@property (nonatomic, assign) NSUInteger amountInSmallestCurrencyUnit
The payment amount in the smallest unit of the given currency. For example, EUR 10 is represented as
1000, because one Euro is divided into 100 Euro cents, or, in other words, EUR is specified to have 2
digits after the decimal separator (ISO 4217).

@property (nonatomic, copy) NSString* signature
The HMAC-MD5 signature of merchant ID, amount, currency, and refno using a shared secret between
the merchant and Datatrans AG. Optional property.

@property (nonatomic, copy) NSString* localizedPriceDescription
The price displayed on the credit card entry screen.

5.4 DTCardPaymentMethod

Class representing raw credit card data to be used for immediate payment. Apps use this
class if they have their own user interface for payment method entry.

5.4.1 Class Methods
There are no class methods.

5.4.2 Instance Methods

-(id)initWithPaymentMethod:(NSString *)method number:(NSString *)number
 expMonth:(NSUInteger)expMonth expYear:(NSUInteger)expYear
 cvv:(NSString *)cvv holder:(NSString *)holder;

Initalizes a DTCardPaymentMethod object with card data. See properties for description
of values.

5.4.3 Properties
@property (nonatomic, copy) NSString* paymentMethod

Payment method constant, e.g. DTPaymentMethodVisa.

@property (nonatomic, copy) NSString* number
Card number.

@property (nonatomic, assign) NSUInteger expMonth
Expiration month, [1, 12], e. g. 9 for September.

@property (nonatomic, assign) NSUInteger expYear
Expiration year, 4 digits, e. g. 2010 for 2010.

@property (nonatomic, copy) NSString* cvv
CVV string, nil for Diners Club cards.

@property (nonatomic, copy) NSString* holder
Card holder’s name or nil.

5.5 DTRecurringPaymentMethod

Base class for recurring payment methods. This class contains only an alias string for
future payments. Subclasses DTPostFinanceCard, DTPayPal, DTReka and DTCreditCard
provide additional information e.g. the masked card number.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 37/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.5.1 Class Methods

+ (instancetype)recurringPaymentMethodWithData:(NSData *)data

Creates and returns a new recurring payment method object from a given NSData object.
This is a convenience method for serialization/deserialization.

Note: This method deserializes to the correct subclass, i.e. a DTCreditCard object is
returned if data contains a serialized credit card.

Parameters
data

Data to be deserialized into a recurring payment method object.

See also instance method -(NSData *) data.

+ (instancetype)recurringPaymentMethodWithJSON:(NSString *)JSON

Creates and returns a new recurring payment method object from a given JSON string.
This is a convenience method for serialization/deserialization.

Note: This method deserializes to the correct subclass, i.e. a DTCreditCard object is
returned if JSON contains a serialized credit card.

Parameters
JSON

JSON string to be deserialized into a recurring payment method object.

See also instance method -(NSString *)JSON.

5.5.2 Instance Methods

- (NSData *)data

Returns an NSData representation of the recurring payment method. This is a
convenience method for serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)recurringPaymentMethodWithData:(NSData *)data.

- (NSString *)JSON

Returns an NSString JSON representation of the recurring payment method. This is a
convenience method for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON.

5.5.3 Properties
@property (nonatomic, copy) NSString* alias

Alias string to be used for future payments.

5.6 DTCreditCard

The DTCreditCard class contains information about a credit card used in an earlier
payment transaction. The DTCreditCard object is used to initialize a DTPaymentController
in hidden mode, i.e. without payment method selection screen. It can be obtained by either
making a successful credit card payment or by creating an alias.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 38/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.6.1 Class Methods

+ (instancetype)creditCardWithData:(NSData *)data

Creates and returns a new credit card from a given NSData object. This is a convenience
method for serialization/deserialization.

Parameters
data

Data to be deserialized into a credit card object.

See also instance method -(NSData *) data.

5.6.2 Instance Methods

- (NSData *)data

Returns an NSData representation of the credit card. This is a convenience method for
serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)creditCardWithData:(NSData *)data.

- (NSString *)JSON

Returns an NSString JSON representation of the credit card. This is a convenience method
for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON of DTRecurringPaymentMethod.

5.6.3 Properties
@property (nonatomic, assign) NSUInteger expMonth

Expiration month, [1, 12], e. g. 9 for September.

@property (nonatomic, assign) NSUInteger expYear
Expiration year, 4 digits, e. g. 2010 for 2010.

@property (nonatomic, copy) NSString* maskedCC
Masked credit card number for displaying purposes, e. g. 432930xxxxxx6095.

@property (nonatomic, copy) NSString* alias
Credit card number alias. May be used interchangeably with the real credit card number for a given
merchant.

@property (nonatomic, copy) NSString* cardHolder
Card holder’s name.

@property (nonatomic, copy) NSString* paymentMethod
Payment method constant, e.g. DTPaymentMethodVisa.

5.7 DTELV

Payment information for recurring ELV payments.

5.7.1 Class Methods

+ (instancetype)elvWithData:(NSData *)data

Creates and returns a new DTELV object from a given NSData object. This is a convenience
method for serialization/deserialization.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 39/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Parameters
data

Data to be deserialized into a DTELV object.

See also instance method -(NSData *)data.

5.7.2 Instance Methods

- (instancetype)initWithAlias:(NSString *)alias

Init method with an alias string.

Parameters
alias

ELV alias string.

- (instancetype)initWithAlias:(NSString *)alias bankrouting:(NSString *)routing

Init method to be used with old-style ELV aliases. Please use initWithAlias: with aliases
returned by the library.

Parameters
alias

ELV alias string obtained before April 15 2015.

routing
Bank routing (Bankleitzahl) required for aliases created before April 15 2015.

- (NSData *)data

Returns an NSData representation of this method. This is a convenience method for
serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)elvWithData:(NSData *)data.

- (NSString *)JSON

Returns an NSString JSON representation of the DTELV object. This is a convenience
method for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON of DTRecurringPaymentMethod.

5.7.3 Properties
@property (nonatomic, copy) NSString* alias

ELV alias for future payments.

5.8 DTPostFinanceCard

Payment information for recurring PostFinance Card payments.

5.8.1 Class Methods

+ (instancetype)pfCardWithData:(NSData *)data

Creates and returns a new PostFinance card from a given NSData object. This is a
convenience method for serialization/deserialization.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 40/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Parameters
data

Data to be deserialized into a PostFinance card object.

See also instance method -(NSData *)data.

5.8.2 Instance Methods

- (NSData *)data

Returns an NSData representation of the PostFinance card. This is a convenience method
for serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)pfCardWithData:(NSData *)data.

- (NSString *)JSON

Returns an NSString JSON representation of the PostFinance card. This is a convenience
method for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON of DTRecurringPaymentMethod.

5.8.3 Properties
@property (nonatomic, copy) NSString* maskedCC

Masked post finance card number for displaying purposes, e.g. xxx xxx xxx 471.

@property (nonatomic, copy) NSString* alias
PostFinance card alias for future payments.

@property (nonatomic, assign) NSNumber* expMonth
Expiration month, [1, 12], e. g. 9 for September.

@property (nonatomic, assign) NSNumber* expYear
Expiration year, 4 digits, e. g. 2010 for 2010.

5.9 DTPayPal

Payment information for recurring PayPal payments.

5.9.1 Class Methods

+ (instancetype)ppWithData:(NSData *)data

Creates and returns a new PayPal object from a given NSData object. This is a
convenience method for serialization/deserialization.

Parameters
data

Data to be deserialized into a PayPal object.

See also instance method -(NSData *)data.

5.9.2 Instance Methods

- (NSData *)data

Returns an NSData representation of the payment method. This is a convenience method
for serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)ppWithData:(NSData *)data.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 41/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

- (NSString *)JSON

Returns an NSString JSON representation of the PayPal object. This is a convenience
method for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON of DTRecurringPaymentMethod.

5.9.3 Properties
@property (nonatomic, copy) NSString* email

PayPal email address for displaying purposes.

@property (nonatomic, copy) NSString* alias
PayPAl alias for future payments.

5.10 DTReka

The DTReka class contains information about an earlier Reka payment/registration.

5.10.1 Class Methods

+ (instancetype)rekaWithData:(NSData *)data

Creates and returns a new Reka object from a given NSData object. This is a convenience
method for serialization/deserialization.

Parameters
data

Data to be deserialized into a Reka object.

See also instance method -(NSData *) data.

5.10.2 Instance Methods

- (NSData *)data

Returns an NSData representation of the Reka object. This is a convenience method for
serialization/deserialization. The data object is not encrypted.

See also class method +(instancetype)rekaWithData:(NSData *)data.

- (NSString *)JSON

Returns an NSString JSON representation of the Reka object. This is a convenience method
for serialization/deserialization.

See also class method +(instancetype)recurringPaymentMethodWithJSON:(NSString
*)JSON.

5.10.3 Properties
@property (nonatomic, assign) NSUInteger expMonth

Expiration month, [1, 12], e. g. 9 for September.

@property (nonatomic, assign) NSUInteger expYear
Expiration year, 4 digits, e. g. 2010 for 2010.

@property (nonatomic, copy) NSString* maskedCC
Masked card number for displaying purposes, e. g. 432930xxxxxx6095.

@property (nonatomic, copy) NSString* alias
Reka alias for future payments.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 42/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.11 DTPaymentOptions

The DTPaymentOptions class is used for settings unrelated to visual appearance.

5.11.1 Class Methods
There are no class methods.

5.11.2 Instance Methods
See properties.

5.11.3 Properties
@property (nonatomic, assign) BOOL testing

Whether Datatrans AG’s test or production server should be used. YES, if the test environment should
be used, NO otherwise. Default value: NO.

@property (nonatomic, assign) BOOL returnsAlias
Whether the payment transaction should be performed in pay+register mode. If the selected
payment method supports it, and if the user accepts the terms, an alias object for future payments
will be returned. (See DTPaymentController property recurringPaymentMethod)

 Default value: NO

@property (nonatomic, assign) DTPaymentReturnsCreditCard returnsCreditCard
Whether the app is interested in the user’s credit card data for future recurring/alias transactions.
Default values:

DTPaymentReturnsCreditCardNever if property returnsAlias = NO
DTPaymentReturnsCreditCardAlways if property returnsAlias = YES

See Table 5-3 for a description of DTPaymentReturnsCreditCard constants.

Constant Description

DTPaymentReturnsCreditCardNever Credit card information is not returned and
the user is not asked if credit card should be
stored.

DTPaymentReturnsCreditCardSelectableDefaultNo Credit card information is returned if the
user gives permission to do so. The UISwitch
is initially set to NO (don’t store credit card).

DTPaymentReturnsCreditCardSelectableDefaultYes Credit card information is returned if the
user gives permission to do so. The UISwitch
is initially set to YES (store credit card).

DTPaymentReturnsCreditCardAlways Credit card information is always returned.
The user is not asked whether data should
be stored.

Table 5-3: DTPaymentReturnsCreditCard constants

@property (nonatomic, assign) BOOL displayShippingDetails
Whether shipping details (address) should be visible when making a PayPal transaction in recurring
payment mode (returnsPayPalAlias flag set). Default value: YES.

@property (nonatomic, assign) BOOL showBackButtonOnFirstScreen
Whether the first screen of the library should have its back button enabled. When the user presses
this button, a cancel notification is sent to the app. Default value: NO.

@property (nonatomic, assign) NSDictionary* merchantProperties
A set of merchant-defined key-value pairs of type NSString*. Properties are sent along with the
payment request and posted to the merchant’s PostURL.

@property (nonatomic, assign) BOOL useWebCreditCardInput
Whether non-native credit card forms should be used. Default value: NO.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 43/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

@property (nonatomic, assign) BOOL useWebELVInput
Whether non-native ELV form should be used. Default value: NO.

@property (nonatomic, assign) BOOL autoSettlement
Whether the transaction should be settled automatically. Default value: NO.

@property (nonatomic, copy) NSString* easypayTitle
Title used for Swisscom Easypay payments.

@property (nonatomic, copy) NSString* easypayDescription
Description used for Swisscom Easypay payments.

@property (nonatomic, copy) NSString* easypayPaymentInfo
Payment info used for Swisscom Easypay payments.

@property (nonatomic, assign) BOOL easypayPresentedAsNATELPay
Whether Swisscom Easypay should be displayed as Swisscom NATEL Pay instead. Default value: NO.

@property (nonatomic, copy) NSString* creditCardInputLocalizedDoneButtonTitle
Override title for the done button on the credit card input screen (default: “Pay” or “Proceed”).

@property (nonatomic, assign) BOOL certificatePinning
Whether secure connections to Datatrans servers require a certificate chain signed with a specific CA
private key. The device’s trust settings are explicitly ignored, i.e. custom installed/white-listed
certificates and/or CAs will not work.

Please be advised that enabling this option will break your app in many corporate networks with
anti-malware/-theft/-espionage SSL proxying.

Default value: NO.

@property (nonatomic, copy) NSString* language
Library language override, ISO 639-1 two-letter code, e.g. “de” or “en”.
Default value: nil (use device language)

@property (nonatomic, copy) DTSwissBillingPaymentInfo* swissBillingPaymentInfo
Payment information for a SwissBilling transaction.

@property (nonatomic, copy) NSString* appCallbackScheme
Unique URL scheme used by other apps (e.g. TWINT) to call the merchant app.

@property (nonatomic, assign) BOOL suppressBusinessErrorDialog
Do not present an error dialog if a critical/business error occurs. Default value: NO.

@property (nonatomic, assign) BOOL skipAuthorizationCompletion
Skip the last step of the authorization process for external/manual authorization. Default:NO

@property (nonatomic, copy) DTApplePayConfig* applePayConfig
Configuration object, mandatory for Apple Pay transactions.

@property (nonatomic, assign) BOOL creditCardScanningEnabled
Whether a scan button should be shown on the credit card entry screen. Default value: YES.

@property (nonatomic, copy) DTByjunoPaymentInfo* byjunoPaymentInfo
Payment information for a Byjuno transaction.

@property (nonatomic, assign) DTPaymentCardHolder cardHolder
Whether the cardholder’s name is required. See Table 5-4 for a description of DTPaymentCardHolder
constants.

@property (nonatomic, copy) DTCustomer* customer
Object representing information about the customer.

@property (nonatomic, copy) DTSwissPassPaymentInfo* swissPassPaymentInfo
Payment information for a SwissPass transaction.

@property (nonatomic, copy) NSString* paysafecardMerchantClientId
Sets the id for identifying a customer of a Paysafecard transaction, i.e. two transactions made from
the same customer must have the same id.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 44/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Constant Description

DTPaymentCardHolderHidden The credit cardholder field is hidden. This is
the default setting.

DTPaymentCardHolderOptional The credit card holder field is visible but the
value is optional.

DTPaymentCardHolderRequired The credit card holder’s name is required.

Table 5-4: DTPaymentCardHolder constants

5.12 DTVisualStyle

The DTVisualStyle class is used for all settings related to visual appearance. Classes
DTSimpleTextStyle and DTShadowTextStyle are used for most style settings (see sections
5.13 and 5.14).

5.12.1 Class Methods

+ (DTVisualStyle *)defaultStyle;

Creates and returns the default display style. Changes can then be applied selectively
using properties.

5.12.2 Instance Methods
See properties.

5.12.3 Properties
All properties are optional if the object is created using +(DTVisualStyle *)defaultStyle.

@property (nonatomic, retain) UIColor* backgroundColor
Screen background color.

@property (nonatomic, copy) DTShadowTextStyle* navigationBarTitleStyle
Font and color of navigation bar text.

@property (nonatomic, retain) UIColor* navigationBarButtonItemDoneTintColor
Color of navigation bar done/pay button.

@property (nonatomic, copy) DTShadowTextStyle* titleStyle
Font and color of text titles.

@property (nonatomic, copy) DTShadowTextStyle* textStyle
Font and color of regular text.

@property (nonatomic, copy) DTShadowTextStyle* emphasizedTextStyle
Font and color of emphasized text.

@property (nonatomic, copy) DTShadowTextStyle* tableViewCellTextStyle
Font and color of table view cells.

@property (nonatomic, retain) UIColor* inputFieldBackgroundColor
Background color of input fields.

@property (nonatomic, copy) DTSimpleTextStyle* inputFieldStyle
Font and color of input fields.

@property (nonatomic, copy) DTShadowTextStyle* inputLabelStyle
Font and color of input field labels.

@property (nonatomic, assign) BOOL isDark
YES if the color scheme is dark, NO otherwise. An info button of type UIButtonTypeInfoLight is drawn if
color scheme is dark, UIButtonTypeInfoDark otherwise. (< iOS 7 only).

5.13 DTSimpleTextStyle

The DTSimpleTextStyle class defines a text’s font and color.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 45/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.13.1 Class Methods
There are no class methods.

5.13.2 Instance Methods
See properties.

5.13.3 Properties
@property (nonatomic, retain) UIColor* foregroundColor

Text color.

@property (nonatomic, retain) UIFont* font
Text font.

5.14 DTShadowTextStyle

The DTShadowTextStyle class inherits from DTSimpleTextStyle and adds drop shadow
definitions.

5.14.1 Class Methods
There are no class methods.

5.14.2 Instance Methods
See properties.

5.14.3 Properties
@property (nonatomic, retain) UIColor* shadowColor

Shadow color. Optional property.

@property (nonatomic, assign) CGSize shadowOffset
Shadow offset. Optional property.

5.15 DTAliasRequest

The DTAliasRequest class is used to specify how aliases are obtained.

5.15.1 Class Methods
There are no class methods.

5.15.2 Instance Methods
-(id) initWithMerchantId:(NSString *)merchantId
 currencyCode:(NSString *)currencyCode
 paymentMethods:(NSArray *)paymentMethods

Creates a new alias request for credit card selection by library.

Parameters
merchantId

Datatrans merchant ID

currencyCode
Currency that is used in the alias request

paymentMethods
Selectable credit card payment methods for alias generation.

-(id) initWithMerchantId:(NSString *)merchantId
 currencyCode:(NSString *)currencyCode
 cardPaymentMethod:(DTCardPaymentMethod *)method

Creates a new alias request with given credit card data.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 46/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Parameters
merchantId

Datatrans merchant ID

currencyCode
Currency that is used in the alias request

cardPaymentMethod
Credit card data

5.16 DTSwissBillingPaymentInfo

Data container for SwissBilling transactions. A DTSwissBillingPaymentInfo object can be
set as payment option if SwissBilling is used or may be chosen by user.

5.16.1 Instance Methods
See properties.

5.16.2 Properties
@property (nonatomic, assign) NSInteger taxAmount

Total tax amount of order

@property (nonatomic, copy) DTAddress* shippingAddress
Shipping address

@property (nonatomic, copy) NSArray* basketItems
List of basket positions of type DTBasketItem

5.17 DTAddress

Object representing a user’s address or a shipping address.

5.17.1 Instance Methods
-(id) initWithFirstName:(NSString *)firstName
 lastName:(NSString *)lastName
 street:(NSString *)street
 zipCode:(NSString *)zipCode

Creates a new address object.

Parameters
firstName

First name

lastName
Last name

street
First street line (see properties)

zipCode
ZIP code

5.17.2 Properties
@property (nonatomic, copy) NSString* city

City

@property (nonatomic, copy) NSString* countryCode
ISO country code

@property (nonatomic, copy) NSString* street2
Second street line

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 47/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.18 DTDate

Object representing a date in Datatrans format.

5.18.1 Instance Methods
-(id) initWithYear:(int)year month:(int)month day:(int)day

Creates a new date object from date components.

Parameters
year

Year (e.g. 2015)

month
Month, 1-based (e.g. 1 for January)

day
Day, 1-based (e.g. 1 for first day of month)

-(id) initWithString:(NSString *)dateString

Creates a new date object from formatted string.

Parameters
dateString

Formatted Datatrans date string, either dd.MM.yyyy, or yyyy-MM-dd

5.19 DTBasketItem

Data container for SwissBilling transactions (see DTPaymentOptions).

5.19.1 Instance Methods
-(id) initWithId:(NSString *)articleId
 name:(NSString *)name
 grossPrice:(NSInteger)grossPrice
 quantity:(NSInteger)quantity

Creates a new basket position object.

Parameters
articleId

Article ID

name
Article name

grossPrice
Article price

quantity
Quantity ordered

5.19.2 Properties
@property (nonatomic, copy) NSString* itemDescription

Description of this item

@property (nonatomic, assign) float_t tax
Tax rate of this item

@property (nonatomic, assign) NSInteger taxAmount
Tax amount

@property (nonatomic, copy) NSString* type
Item type, “goods” is default

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 48/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.20 DTApplePayConfig

Configuration object for Apple Pay transactions (see DTPaymentOptions).

5.20.1 Class Methods
+ (BOOL)hasApplePayWithSupportedNetworks:
 (NSArray<PKPaymentNetwork> *)supportedNetworks

Whether Apple Pay is available on the device for the specified networks (see Section 4.5.3).
It is not usually necessary to check this as the library automatically hides the Apple Pay
payment method if unavailable.

5.20.2 Instance Methods
- (instancetype)initWithMerchantIdentifier:(NSString *)merchantIdentifier
 supportedNetworks:(NSArray<PKPaymentNetwork> *)supportedNetworks
 countryCode:(NSString *)countryCode

Creates a new Apple Pay configuration object with Apple Pay country code.

Parameters
merchantIdentifier

Merchant identifier registered for Apple Pay

supportedNetworks
The supported payment networks (see Section 4.5.3)

countryCode
Apple Pay country code

- (instancetype)initWithMerchantIdentifier:(NSString *)merchantIdentifier
 supportedNetworks:(NSArray<PKPaymentNetwork> *)supportedNetworks

Creates a new Apple Pay configuration object with CH (Switzerland) country code for
payments in Switzerland.

Parameters
merchantIdentifier

Merchant identifier registered for Apple Pay

supportedNetworks
The supported payment networks (see Section 4.5.3)

5.20.3 Properties
@property (nonatomic, readonly) PKPaymentRequest* request

The request object for additional configuration of Apple Pay. See official Apple Pay documentation
for more information.

@property (nonatomic, copy) NSString* finalSummaryItemLabel
Label used for the final summary item without having to configure the request object. The default
label is "Total", but you might instead want to use the name of your shop. The string will then read:
PAY YOURSHOP: XX.XX

@property (nonatomic, weak) id<DTApplePayDelegate> delegate
Delegate object for callbacks during Apple Pay authorization.

5.21 DTApplePayDelegate

Delegate object for callbacks during the Apple Pay authorization process. Methods are
taken from PKPaymentAuthorizationViewControllerDelegate (minus non-optional
methods implemented by the library itself). For more information, see the documentation
of PKPaymentAuthorizationViewControllerDelegate.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 49/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.22 DTCustomer

Object representing information about the user.

5.22.1 Instance Methods
See properties.

5.22.2 Properties
@property (nonatomic, copy) DTAddress* address

Address

@property (nonatomic, copy) DTDate* birthDate
Birth date

@property (nonatomic, copy) NSString* cellPhone
Cell phone number

@property (nonatomic, copy) NSString* customerId
Id of the customer

@property (nonatomic, copy) NSString* gender
Gender

@property (nonatomic, copy) NSString* ipAddress
IP address

@property (nonatomic, copy) NSString* language
Language

@property (nonatomic, copy) NSString* mailAddress
Email address

@property (nonatomic, copy) NSString* phone
Phone number

@property (nonatomic, copy) NSString* type
Type of the customer (either “P” for person or “C” for company)

5.23 DTByjunoPaymentInfo

Data container for Byjuno transactions. A DTByjunoPaymentInfo object can be set as
payment option if Byjuno is used or may be chosen by user.

The field customData can be used during regular payments, alias registration and alias
payments. All other fields are only supported during regular payments and alias
registration.

5.23.1 Instance Methods
See properties.

5.23.2 Properties
@property (nullable, nonatomic, copy) NSString* subtype

The Byjuno specific payment method used for the transaction.
Values: INVOICE, INSTALLMENT, BYJUNO_INVOICE, MONTHLY_INVOICE

@property (nullable, nonatomic, copy) NSNumber* customerEmailConfirmed
BOOL. Indicates that the customer has confirmed the email address to the merchant
Default: false

@property (nullable, nonatomic, copy) NSString* customerInfo1
Customer information for credit check.

@property (nullable, nonatomic, copy) NSString* customerInfo2
Customer information for credit check.

@property (nullable, nonatomic, copy) NSString* deliveryMethod
Can be one of POST (Delivery by Swiss Post), SHOP (Point of Sale) or HLD (Home Delivery Service)

@property (nullable, nonatomic, copy) NSString* deviceFingerprintId
Identification of the customer in the shop

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 50/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

@property (nullable, nonatomic, copy) NSNumber* paperInvoice
BOOL. Whether or not to send a paper invoice.

@property (nullable, nonatomic, copy) NSNumber* repaymentType
NSInteger. Number from 1 to 20 to indicate the repayment schedule. This is used in combination with
payment methods and defined per client configuration.

@property (nullable, nonatomic, copy) NSString* riskOwner
Defines which party should take the risk.
Values: IJ, CLIENT

@property (nullable, nonatomic, copy) NSString* siteId
Can be used in case when client operates different legally separated stores / points of sale.

@property (nullable, nonatomic, copy) NSString* verifiedDocument1Type
Indication if merchant is having verified documents from client request.
Values: swiss-travel-pass, other

@property (nullable, nonatomic, copy) NSString* verifiedDocument1Number
Verified document number.

@property (nullable, nonatomic, copy) NSString* verifiedDocument1Issuer
Verified document issuer.

@property (nullable, nonatomic, copy) NSArray<NSString *>* customData
A list of custom data fields. It can accept up to 10 entries.

@property (nullable, nonatomic, copy) NSNumber* firstRateAmount
NSInteger. Amount of the first rate paid by the customer.

5.24 DTAuthorizationRequest

The DTAuthorizationRequest class describes a payment authorization.

5.24.1 Class Methods
There are no class methods.

5.24.2 Instance Methods
See properties.

5.24.3 Properties
@property (nonatomic, copy) NSString* transactionId

The transaction ID, supplied by Datatrans AG.

@property (nonatomic, copy) NSString* merchantId
The merchant ID, supplied by Datatrans AG.

@property (nonatomic, copy) NSString* refno
The refno, supplied by the merchant’s server.

@property (nonatomic, assign) NSUInteger amountInSmallestCurrencyUnit
The payment amount in the smallest unit of the given currency.

@property (nonatomic, copy) NSString* currencyCode
The currency code (ISO 4217).

@property (nonatomic, assign) BOOL autoSettlement
Whether the transaction should be settled automatically. Default value: NO.

@property (nonatomic, copy) NSDictionary* merchantProperties
A set of merchant-defined key-value pairs of type NSString*.

5.25 DTBusinessError

Error that includes the underlying acquirer error code.

5.25.1 Class Methods
There are no class methods.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 51/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

5.25.2 Instance Methods
See properties.

5.25.3 Properties
@property (nullable, nonatomic, copy) NSString* acquirerAuthorizationCode

The underlying acquirer authorization code.

@property (nullable, nonatomic, copy) NSNumber* acquirerErrorCode
The underlying acquirer error code.

@property (nullable, nonatomic, copy) NSString* threeDSecureCardHolderInfo
The text provided by the ACS/Issuer to Cardholder during a transaction that was not authenticated
by the ACS.

@property (nullable, nonatomic, copy) NSString* threeDSecureTransStatusReason
The transaction status reason.

5.26 DTSwissPassPaymentInfo

Data container for SwissPass transactions. A DTSwissPassPaymentInfo object can be set
as payment option if SwissPass is used or may be chosen by user.

5.26.1 Instance Methods
-(instancetype) initWithSwissPassCardNumber:(NSString *)cardNumber
 swissPassZipCode:(NSString *)zipCode

Creates a new DTSwissPassPaymentInfo object.

Parameters
cardNumber

The SwissPass card number

zipCode
The SwissPass zip code

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 52/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

6 Library Integration

6.1 Package Contents

The library is distributed as a single .zip file with a directory structure as shown in Table
6-1.

Directory Description

/doc Contains this documentation.

/include Contains header files of public library classes.

/lib Contains the static library code.

/resources Contains resources used by the library.

Table 6-1: Directory structure

In order to use the library in a new project, these files have to be copied into the project’s
Xcode environment.

6.2 Xcode Integration

Open your project file. Right-click on the project in Xcode and choose Add->New Group.
Use DTiPL as the group’s name.

Drag and drop the include and the lib folder of the library distribution into the newly
created DTiPL group. Make sure “Copy items into destination group’s folder” is checked
and that items are added to your targets (Figure 6-1).

Figure 6-1: Copying files into Xcode

Two libraries have been added to your targets. Remove libdtipl-iphonesimulator.a from
your targets, but keep libdtipl.a.

Copy library file resources/dtipl-resources.bundle to the Resources folder of your project.
The project should now look as depicted in Figure 6-2.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 53/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Figure 6-2: Project structure

Click the project file and add -all_load -ObjC to Other Linker Flags under the build tab for
all configurations.

Click the app target. Under the general tab add the following libraries to the list of Link
Binary With Libraries:

• libdtipl.a

• libc++.dylib

• libxml2.dylib

• AudioToolbox.framework

• AVFoundation.framework

• CoreMedia.framework

• CoreVideo.framework

• MobileCoreServices.framework

• PassKit.framework

• WebKit.framework

Figure 6-3: Frameworks and libraries to be linked

The library’s header files can now be included into class files and the project builds and
links with the Datatrans iOS payment library.

6.3 Simulator support on Apple Silicon Macs
The library libdtipl.a contains slices for actual devices and for Simulator on Macs with an
Intel processor. If you want to run your app in Simulator on an Apple Silicon Mac, you need
to integrate libdtipl-iphonesimulator.a as follows.

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 54/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

• In addition to libdtipl-iphonesimulator.a, also remove libdtipl.a from your targets.

• In Other Linker Flags under the build tab, add -ldtipl for actual device builds and add
-ldtipl-iphonesimulator for Simulator builds. It should look as depicted in Figure 6-4.

Figure 6-4: Linking the libraries for Apple Silicon Simulator

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 55/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

7 Known Issues

7.1 Bitcode

Starting from Xcode 7, apps are built with Bitcode by default. Bitcode is intermediate
program code that can be compiled to a final binary differently for specific devices.
Currently, Bitcode is rarely required and usually not useful. On the other hand, it makes
intermediate products such as the Datatrans Payment Library significantly bigger. The
library’s size with Bitcode is about 170 MB.

If you are determined to use Bitcode in your app, please contact Datatrans Support for a
version that has Bitcode enabled.

For everyone else, we suggest to turn off Bitcode in your project’s settings:

Build Settings -> Build Options -> Enable Bitcode: NO

If you do not disable Bitcode, your project continues to compile and run fine. However, you
will get an error once you are trying to archive the app for iTunes Connect:

ld: bitcode bundle could not be generated because 'lib/libdtipl.a(libdtipl.a-arm64-

master.o)' was built without full bitcode. All object files and

libraries for bitcode must be generated from Xcode Archive or

Install build for architecture arm64

clang: error: linker command failed with exit code 1 (use -v to see invocation)

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 56/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

8 Appendix

8.1 List of Illustrations

Figure 2-1: Payment process overview 10
Figure 2-2: Library screen shots 11
Figure 3-1: Flow of a payment with deferred authorization (Apple Pay) 19
Figure 4-1: Mandatory NSCameraUsageDescription setting 22
Figure 4-2: Application URL scheme definition 22
Figure 4-3: Mandatory PostFinance scheme to be added to info.plist 24
Figure 4-4: Apple Pay Capability 24
Figure 4-5-1: Library classes 30
Figure 6-1: Copying files into Xcode 52
Figure 6-2: Project structure 53
Figure 6-3: Frameworks and libraries to be linked 53
Figure 6-4: Linking the libraries for Apple Silicon Simulator 54

8.2 List of Code Listings

Listing 3-1: DTPaymentController invocation in standard mode 12
Listing 3-2: DTPaymentOptions example 13
Listing 3-3: Delegate notification on success 14
Listing 3-4: postURL fields 15
Listing 3-5: Applying custom style 15
Listing 3-6: Applying a custom color on the dark style only 15
Listing 3-7: Recurring payment in hidden mode 16
Listing 3-8: Hidden mode payment with card data 16
Listing 3-9: Creation of credit card alias in standard mode 17
Listing 3-10: Alias notification 17
Listing 3-11: Creation of credit card alias in hidden mode 17
Listing 3-12: (De-)Serialization to/from JSON of a DTRecurringPaymentMethod 18
Listing 3-13: Summary items for deferred Apple Pay authorization 18
Listing 3-14: Example implementation of deferred payment authorization (Apple Pay) 19
Listing 3-15: Get payment method and underlying error from NSError 20
Listing 3-16: Invoking the library using the new API flow 21
Listing 3-17: Hidden mode credit card payment using the new API flow 21
Listing 4-1: TWINT URL scheme option 22
Listing 4-2: Mandatory TWINT schemes to be added to info.plist 23
Listing 4-3: SwissBilling payment 24
Listing 4-4: Configure Apple Pay for payments 25
Listing 4-5: More Apple Pay configuration options 25
Listing 4-6: Set the DTApplePayDelegate for interactive updates 26
Listing 4-7: Update summary items / payment total 26
Listing 4-8: Direct invocation of Apple Pay 26
Listing 4-9: Byjuno payment 27
Listing 4-10: SwissPass payment 28
Listing 4-11: POWERPAY payment 28
Listing 4-12: ELV payment 29
Listing 4-13: Paysafecard payment 29
Listing 5-1: Grouping payment methods 31

8.3 List of Tables

Table 3-12: Accessibility labels 20

Datatrans iOS Payment Library

Developer's Manual

Version: 4.6.7
Date: 2022-01-05
Page: 57/57

Datatrans AG, Kreuzbühlstrasse 26, CH 8008 Zürich - Tel. +41 44 256 81 91, Fax +41 44 256 81 98 - www.datatrans.ch

Table 5-1: DTPaymentErrorCode codes 35
Table 5-2: DTCancellationType types 35
Table 5-3: DTPaymentReturnsCreditCard constants 42
Table 5-4: DTPaymentCardHolder constants 44
Table 6-1: Directory structure 52

